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Abstract

Asymptotic homogenisation offers a way to efficiently analyse the mechani-
cal behaviour of multiscale configurations. But near a multiscale boundary,
the homogenisation strategy should be modified, as the underlying periodicity
assumption breaks down there. In this article, we introduce a machine-learning-based
asymptotic homogenisation and localisation scheme to formulate such boundary
layer effects. To this end, we define a set of boundary layer cells, where external
loading conditions are imposed on one side of the cell, and matching conditions
with the interior periodic cells are imposed on the opposite side. The formulation is
also extended to cover situations where the multiscale structure is not fully periodic,
but spatially varying. Implied from the asymptotic results, neural networks can be
trained to memorise the interrelationship between key local quantities, such as the
magnitude of the local maximum von Mises stress, and the local mechanical and geo-
metric features. Equipped with the trained neural networks, the online calculation for
key (boundary-localised) quantities of interest under arbitrary loading conditions is
expected to be accelerated substantially. Numerical examples are further presented
to show the reliability of the proposed work for boundary stress prediction.
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1 INTRODUCTION

Configurations decorated with microstructure provide an excellent solution when the issue of lightweight is in concern, and
their vast applications have already been seen in engineering fields like aerospace1, acoustics2, biomedical applications3, etc.
Over the past few decades, advances in high-performance computing and additive manufacturing keep catalysing the need for
multiscale modelling of materials and systems, and they also put forward requirements for reliable and efficient assessment of
the performance of such multiscale structures for actual service processes.

For multiscale configurations (MSCs), computation of their localised properties, such as the structural strength and/or the
weakest point, still faces challenges. If brute force with extremely fine mesh is carried out directly on multiscale structures,
detailed information of every point is then available. However, this inevitably leads to huge computational costs4,5, some of
which may be infeasible for realisation. It is therefore of great practical significance to develop reliable and efficient multiscale
methods and algorithms, which can properly manage computational efficiency and modelling accuracy. For certain composite
multiscale structures, self-consistent methods and generalised self-consistent methods provide analytical solutions for a class of
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simple single inclusion problems. However, for fairly complicated cases, the ideas of treating them as a homogeneous contin-
uum may offer a way out of computational burden. Among them, computational homogenisation (CH) methods rooted in the
concept of representative volume element (RVE) have been regarded as a routine operation for analysing MSC6,7,8,9,10. They
feature a fairly clear mechanical background and the possibility of dealing with highly complex issues, such as nonlinearity6,7,
including large-strain8, heterogeneous materials10, etc. Another widely used multiscale computational strategy stems from the
asymptotic homogenisation (AH) method, which links the microscopic characteristics and the equivalent properties through rig-
orous mathematical derivations, and decomposition of a multiscale problem into two problems defined on different length scales
can be realised. Such an AH way of multiscale modelling was first devised for the analysis of linear periodic structures11,12

and later extended to cover topics of stress-strain nonlinearity13,14, damage15,16, higher-order expansion17, and spatially-varying
microstructure18, etc..

All the aforementioned methods enjoy their conceptualised high efficiency in their own fields. But when treating MSCs in
a homogenised sense, such homogenisation-based approaches necessitate modification if localised performance indices, such
as the strength at the weakest site, are of interest. In the past few decades, cascade of research on CH for local stress recovery
have emerged, e.g., semi-analytical methods including the Transformation Field Analysis (TFA)19,20 and Non Uniform TFA
(NTFA)21,22, multiscale computational techniques including the FE2 method9,23 based on finite element analysis (FEA), methods
based on Fast Fourier Transforms24, and so on. These methods are all proposed for enabling the recovery of the information of
localised fields, but often at the cost of suffering from severe efficiency problems25. For AH approaches, efforts for the recovery
of key localised stress components also never cease. Lefik and Schrefler26 pointed out that the homogenisation process will
result in two different stress tensors: one is the mean stress field, denoting results of homogenised rather than real structures,
and the other is the local stress field, relating to each representative cell. This means that the AH approach is not just limited to
giving compliance of MSCs, but can also capture the local behaviour of microstructures. But such an extraction operation relies
on the storage of every cell result and may cause memory explosion when dealing with a large number of micro cells or graded
microstructures.

To enhance the efficiency of AH approaches, especially for the extraction of key localised quantities in graded microstructures,
a combinative use of machine learning (ML) and AH has been suggested27. But there remain some problems. Most homogenisa-
tion methods, including the mentioned RVE methods, suppose that the object under study extends infinitely along the direction
where the cell possesses periodicity, therefore leading to a failure to acquire a good approximation near the boundary of the
actual configuration (with a finite size). Moreover, boundaries and interfaces are likely the places where configurational damage
initiation begins, thus a scheme to accurately and efficiently capture the localised strength near boundaries should supplement
the judgment basis of structural safety. It is generally believed that there are two main reasons why the otherwise realiable AH
model in the interior region behaves irregularly near the boundary. Firstly and intuitively, the cell can no longer be deemed to
be locally periodic along the boundary normal; secondly, the stress field satisfies a stress boundary condition (BC) not just in a
mean sense but a local one. So, due to the presence of such a “boundary layer (BL)”, the AH formulation should be modified
accordingly.

Earlier attempts on considering BL effects under the AH framework were firstly made in a theoretical way26,28,29,30, where
a “BL corrector” is introduced to the first-order expansion term of the overall displacement field u𝜖 to take into account the
effect of BL on the system. Such an idea of including a BL term to cope with the periodicity loss near a multiscale boundary
was further developed, such as the computation of steady thermal conduction28 and boundary localised stresses for composite
materials, such as the stratified materials29,30 and superconducting coils26. Here the “BL corrector” retains periodicity regarding
the micro variables tangentially along the boundary, and decays exponentially regarding the microscopic variable along the
boundary normal31. Thus the final solution to the global stress field is approximated by the sum of the original AH result and
the BL correction term. The idea of BL correctors points out a clear path to capture the characteristic behaviour at multiscale
boundaries, but it also brings with it several limitations for further application

∙ Existing theoretical studies are mainly focused on periodic structures, where the cell problems to be solved are relatively
unitary;

∙ The boundary shapes they dealt with were all simple cases of straight lines, which may not be easy to implement for
configurations with curved boundaries;

∙ The introduction of “ BL corrector” is accompanied with a BL correction problem defined over a domain that is infinitely
extended toward the multiscale interior. This inevitably introduces ambiguities on determining the BL size in computation.
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Given the above limitations, tuning the concept of BL corrector in an approximate but computational-friendly manner seems
like an intuitive solution. Recently, local stress recovery associated with the BL has been studied from a purely computational
aspect based on finite volume element32 and multiscale eigenelement method33. Both of them adopted a two-step strategy, that
is, 1) the computation of homogenisation results of the interior region (region except the BL); 2) the reconstruction of the BL
using direct FEA, with the original outer BCs and displacements given by interior homogenisation serving as its new BCs. In
this paper, we introduce, with regard to fully periodic interior cells, the concept of BL cells that span a limited number (one
period to be precise, as systematically investigated by Drago and Pindera34) of constituent cells toward the interior of the porous
structure. Instead of demanding exponential decay at infinity, as done in the rigorous treatment, we impose matching conditions
of certain stress components on the BL cell boundary that virtually joins with an interior periodic cell. Thus a BL problem can
be established, and its predominant discrepancy against an interior cell problem lies in the BCs imposed on surfaces orthogonal
to the boundary normal. On the outer boundary of the BL cell, it is imposed with the actual BCs applied to the original MSCs.
On the opposite surface, traction BCs in consistency with the virtual interior cell problem are considered. In this viewpoint, a
BL cell problem must be in association with an interior cell problem.

The solutions for the BL cell problem mentioned above contain key information about the desired localised stress compo-
nents, and ML models are trained to store such information. The input arguments of the neural network (NN) in use include
the descriptions of the microstructural BL cell, the actual BCs, the on-site mean-field stress, as well as the key parameters sum-
marising the load from the adjacent virtual interior cell problem. Upon the completion of the training of such NNs, the online
computation for the homogenised problem suffices as the localised quantities of interest are obtained by just calling the NN with
the input arguments evaluated properly.

For method verification, the performance of the NNs constructed above in predicting the local maximum von Mises stresses
(LMvMSes) near the structure boundary are examined through several numerical examples, including MSCs with various
microstructural geometries and BCs. Two types of NNs are involved here, they are constructed according to the interior cells
and BL cells, respectively. Comparison between values predicted by both NNs with the benchmark obtained from the direct
fine-mesh FEA of the porous structure shows that the BL networks do give accurate and reliable predictions to the LMvMSes
close to the boundary in all the given examples, while in some cases, values predicted by the NN constructed based on the inte-
rior cell can also be used as accurate approximations, but they are not “reliable” though, since the physical model of the interior
cell is not reasonable near the edge.

The remainder of this article is structured as follows. The detailed derivation of the BL cell problem subject to displacement
BCs in a periodic structure is given in Sec. 2. Such procedures are further generalised to other cases including stress BCs and
spatially-varying multiscale configurations (SVMSC) in Sec. 3. In Sec. 4, the specific implementation processes of the ML
are introduced on the basis of the obtained asymptotic expressions. And the NNs corresponding to different regions, BCs and
geometries are pre-trained. This is followed by the verification, the predicted values are compared with the results given by
direct fine-scale computation in Sec. 5 so as to demonstrate the feasibility and reliability of the present work. A summary and
extended discussion comprise of Sec. 6.

Unless specified, indices with Greek letters, such as 𝛼, 𝛽, etc., appearing in this article consistently represent the incomplete
set of indices excluding that used to capture variation along the boundary normal, i.e., 𝛼, 𝛽 = 1, ⋯ , 𝑁 − 1, here 𝑁 denotes the
spatial dimension, while those with Latin letters, such as 𝑖, 𝑗, 𝑘, 𝑙,⋯, have a full family of indices from 1 up to 𝑁 . In addition,
the Einstein summation rule is applied to both the Greek indices and the Latin indices throughout the article.

2 BASIC ASYMPTOTIC FORMULATION OF MICROSTRUCTURAL BOUNDARY LAYER

The current work is aimed to model microstructural BL effects in a more general sense. However, to help the readers be famil-
iarised with the modelling procedure, we are focused on periodic configurations subject to displacement BCs for the moment,
and its generalisation will be considered in Sec. 3.

2.1 Problem settings
A regular rectangular domain infilled with periodic microstructure in space ℝ𝑁 , where 𝑁 = 2 or 3 represents the spatial dimen-
sion, is considered here in first, with an illustrative example shown in the upper panel of Fig. 1. The overall rectangular domain
is denoted by Ω, with 𝜕Ω being the corresponding (overall) boundary. Inside Ω, the region occupied by solids is denoted by Ωs,
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whose boundary counterpart takes the notation of 𝜕Ωs. Thus the actual boundary of this MSC as shown in Fig. 1 should consist
of two sections. One is the boundary sections in the exterior where external BCs, such as the displacement BC on 𝜕Ωd or the
traction BC on 𝜕Ωt , can be applied. Mathematically, such boundary sections are contained in the set of

𝜕Ωd ∪ 𝜕Ωt = 𝜕Ω ∩ 𝜕Ωs. (1)

The other set of the multiscale boundary section is formed by boundary pieces in the interior of Ω, that is the inner surface due
to the presence of microstructure, and they are collectively summarised by 𝜕Ωi.

A multiscale structure with an overall characteristic length 𝐿 is filled in Ω, and its constituent unit cells is characterised by
another length parameter ℎ. Given the geometrically multiscale nature of the configuration, ℎ ≪ 𝐿, and a small parameter 𝜖 is
then introduced by

𝜖 = ℎ
𝐿

≪ 1. (2)

Note that the performance of a multiscale structure takes place simultaneously at both the macroscopic and the microscopic
levels. Here we introduce another coordinate system 𝑥𝜖1 − 𝑥𝜖2, where a superscript “𝜖” indicates that the spatial variation on both
length scales is considered simultaneously.

FIGURE 1 Representation of an MSC. The whole domain Ω is devided into two parts: the interior region Ω∖Ω̃ and the boundary
layer region Ω̃.

Therefore, the equilibrium state of the solid part of the MSC is described by

−
𝜕𝜎𝑖𝑗
𝜕𝑥𝜖𝑗

= 𝑓𝑖, in Ωs, (3)

for 𝑖 = 1, ⋯ , 𝑁 , where f is the body force per volume, 𝝈 is the structural stress field whose components are related to those of
the strain field 𝜺 through the elasticity tensor ℂ𝑖𝑗𝑘𝑙 (𝑖, 𝑗, 𝑘, 𝑙 = 1, ⋯ , 𝑁),

𝜎𝑖𝑗 = ℂ𝑖𝑗𝑘𝑙𝜀𝑘𝑙 = ℂ𝑖𝑗𝑘𝑙
𝜕𝑢𝑘
𝜕𝑥𝜖𝑙

, (4)

with u being the displacement field. Note that the fourth-order tensor possesses a certain symmetry: ℂ𝑖𝑗𝑘𝑙 = ℂ𝑗𝑖𝑘𝑙 = ℂ𝑘𝑙𝑖𝑗 .
Meanwhile a set of BCs should be proposed there, together with the governing equation (3). First, the boundaries from the

microstructural interior 𝜕Ωi, as illustrated by Fig. 1, should be in a traction-free state, i.e.,

𝜎𝑖𝑗𝑚𝑗 = ℂ𝑖𝑗𝑘𝑙
𝜕𝑢𝑘
𝜕𝑥𝜖𝑙

𝑚𝑗

|||||𝜕Ωi

= 0. (5)
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On the microstructural exterior, we are focused in this section on displacement BCs given by

𝑢𝑖||𝜕Ωd
= 𝑢0𝑖 . (6)

2.2 Asymptotic expansion
2.2.1 Introduction of boundary layer cells
The fundamental assumption of microstructures being locally periodic underlying general AH theory becomes questionable near
the domain boundary. To this end, we consider a layer of “special cells” (termed as the BL cells) connecting the interior with
the actual boundary. As shown in Fig. 1, the geometry of such BL cells can be identical or slightly different from the interior
cells. Note that there are certain scenarios where cells near the domain boundary bear different geometric profiles against the
cells in the interior for practical purpose. For instance, a solid frame is usually attached to the periphery of an MSC to facilitate
the external loadings.

Due to the presence of such BLs, the computational domain is divided into two parts: the interior region Ω∖Ω̃ and the BL
region Ω̃. Here the symbol “~” is used to distinguish quantities evaluated in the BL from those in the interior, and the BL
thickness is set to be 𝑑. Aimming to capture the “multiscale” feature of the model, nondimensionalisation is carried out for
spatial variables and some other quantities, i.e.,

x̄𝜖 = x𝜖

𝐿
, ū = u

𝐿
, ℂ̄𝑖𝑗𝑘𝑙 =

ℂ𝑖𝑗𝑘𝑙

ℂ1111
, (7)

where 𝐿 is recalled to be the length of the specimen, the “–” symbol over a letter donotes its nondimensional counterpart, and
the meaning of which will be consistent in the subsequent derivation.

To further investigate the influence of microstructure, we amplify the original scale variables by dividing the cell length to
create a coordinate system 𝑧̄1 − 𝑧̄2 in the microscopic scale, and the corresponding variable z̄ is thus defined by

z̄ = x
ℎ
= x̄

𝜖
. (8)

Therefore, the original periodic cell domain is nondimensionalised to Υ = [0, 1]𝑁 , and the BL cell becomes Υ̃ = [0, 1]𝑁−1 ×
[0, 𝜁 ], where the nondimensional BL thickness equals

𝜁 = 𝑑∕ℎ. (9)

Inside the two types of cells, the solid regions are denoted by Υs and Υ̃s, respectively, with 𝜕Υs and 𝜕Υ̃s being the corresponding
solid boundaries.

Here without loss of generalities, we can assume that the boundary section for BL consideration always coincides with the
𝑥𝑁 = 0 line/plane. Once boundary sections which are located at different places or with a different boundary orientation are
under investigation, one may refer to Appendix A to see the linkage between the formulation then and the present situation.

Compared with the interior cells, a BL cell accommodates more various BCs. Here a noting subindex is affiliated with a
boundary section in the BL cell Υ̃, so as to indicate the type of BCs imposed there, and they are illustrated in the bottom left
panel of Fig. 1 and get summarised as follows. 𝜕Υ̃p indicates the periodic boundary that is a part of the cell exterior boundary
orthogonal to the local tangent plane at the on-site boundary point; 𝜕Υ̃m indicates the boundary section where a matching of
traction BCs with a virtual interior cell is required; 𝜕Υ̃e denotes the boundary section that coincides with the actual BC applied to
the overall domain; 𝜕Υ̃i denotes the interior boundary section within Υ̃ where a traction-free state is declared. And 𝐦 represents
the outer normal at a point on the boundary of a cell entity.

2.2.2 Asymptotic formulation with the interior cell
The treatment of the original equation (3) in the interior cell Υ is the same as that in traditional AH models, i.e., one can consider
its asymptotic behaviour in a scale-separated form. Thus, the two-scale variable 𝑥̄𝜖𝑖 can be expressed as two terms related to a
set of macroscopic variable 𝑥̄𝑖 and the set of microscopic variable 𝑧̄𝑖 defined by Eq. (8). It is noted that scale separation emerges
as the spatial gradient with respect to x̄𝜖 is considered. Upon the use of the differentiation chain rule, we have

𝜕
𝜕𝑥̄𝜖𝑖

= 𝜕
𝜕𝑥̄𝑖

+ 1
𝜖

𝜕
𝜕𝑧̄𝑖

. (10)
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TABLE 1 Asymptotic expansion in both the interior and the BL regions as shown in Fig. 1.

Interior Region Boundary Layer Region

Rescale z̄ = x̄∕𝜖 z̄ = x̄∕𝜖

Free 𝑥̄𝑖 ∈ Ω̄∖ ̄̃Ω, 𝑧̄𝑖 ∈ Υs 𝑥̄𝛼 ∈ ̄̃Ω, 𝑧̄𝑖 ∈ Υ̃s

Variables 𝑖 = 1, ⋯ , 𝑁 𝛼 = 1, ⋯ , 𝑁 − 1; 𝑖 = 1, ⋯ , 𝑁

Scale 𝜕
𝜕𝑥̄𝜖𝑖

= 𝜕
𝜕𝑥̄𝑖

+ 1
𝜖

𝜕
𝜕𝑧̄𝑖

𝜕
𝜕𝑥̄𝜖𝛼

= 𝜕
𝜕𝑥̄𝛼

+ 1
𝜖

𝜕
𝜕𝑧̄𝛼

Separation 𝜕
𝜕𝑥̄𝜖𝑁

= 1
𝜖

𝜕
𝜕𝑧̄𝑁

Note that the AH formulation over the periodic cell has been discussed properly in literature, e.g. Ref.11. Here we just list the
key results for further usage.

1) The asymptotic expansion of the displacement and stress fields in terms of the small parameter 𝜖 reads

𝑢̄𝜖𝑖 ∼ 𝑢̄(0)𝑖 (x̄) + 𝜖𝑢̄(1)𝑖 (x̄; z̄) +⋯ ∼ 𝑢̄H𝑖 (x̄) + 𝜖

(
𝜉𝑠𝑡𝑖

𝜕𝑢̄H𝑠
𝜕𝑥̄𝑡

)
+  (

𝜖2
)
; (11a)

𝜎̄𝜖
𝑖𝑗 ∼ 𝜎̄(0)

𝑖𝑗 + 𝜖𝜎̄(1)
𝑖𝑗 +⋯ ∼

(
ℂ̄𝑖𝑗𝑘𝑙 + ℂ̄𝑖𝑗𝑠𝑡

𝜕𝜉𝑘𝑙𝑠
𝜕𝑧̄𝑡

)
𝜕𝑢̄H𝑘
𝜕𝑥̄𝑙

+  (𝜖) , (11b)

where ūH denotes the (nondimensional) homogenised displacement field; 𝜉𝑠𝑡𝑖 form a third-order tensor which is the solution
of certain cell problems defined on the interior periodic cell.

2) The equivalent macroscopic elasticity tensor of the periodic cell is formed by

ℂ̄H
𝑖𝑗𝑘𝑙 = ∫

Υs

(
ℂ̄𝑖𝑗𝑘𝑙 + ℂ̄𝑖𝑗𝑠𝑡

𝜕𝜉𝑘𝑙𝑠
𝜕𝑧̄𝑡

)
𝑑z̄. (12)

3) A homogenised equilibrium equation for ūH of the interior region is established by

𝜕
𝜕𝑥̄𝑗

(
ℂ̄H

𝑖𝑗𝑘𝑙

𝜕𝑢̄H𝑘
𝜕𝑥̄𝑙

)
= 0, in Ω̄∖ ̄̃Ω. (13)

2.2.3 Expansion of the field variables in the BL region
Due to the absence of periodicity along the surface normal, the structural behaviour in the BL region should be analysed exclu-
sively, while its matching with the interior cell needs to be taken into account. In the BL region, the geometric domain of the
BL cell can be expressed as 𝜕Ω̄ × Υ̃, with 𝜕Ω̄ =

{
x̄ ∣ 𝑥̄𝑁 = 0

}
. Note that on 𝜕Ω, differentiation is only meaningful along any

direction in perpendicular to the on-site surface normal. As a result, the term 𝜕∕𝜕𝑥̄𝑁 should no longer appear as the scale get
separated, i.e.,

𝜕
𝜕𝑥̄𝜖𝛼

= 𝜕
𝜕𝑥̄𝛼

+ 1
𝜖

𝜕
𝜕𝑧̄𝛼

; 𝜕
𝜕𝑥̄𝜖𝑁

= 1
𝜖

𝜕
𝜕𝑧̄𝑁

. (14)

It is recalled that the Greek subindex 𝛼 here is adopted implying that consideration is only for the (𝑁 − 1) variables that are
parallel to the on-site tangent plane. In the BL region, variation along the surface normal is merely due to the microstructural
presence measured in 𝑧̄𝑁 . Therefore, the displacement and stress fields in the BL region should be asymptotically expanded by

̄̃𝑢𝜖𝑖 ∼ ̄̃𝑢(0)𝑖
(
𝑥̄𝛼 , 0; z̄

)
+ 𝜖 ̄̃𝑢(1)𝑖

(
𝑥̄𝛼 , 0; z̄

)
+⋯ ;

̄̃𝜎𝜖
𝑖𝑗 ∼

1
𝜖
̄̃𝜎(−1)
𝑖𝑗 + ̄̃𝜎(0)

𝑖𝑗 +⋯ = 1
𝜖
ℂ̄𝑖𝑗𝑘𝑙

𝜕 ̄̃𝑢(0)𝑘

𝜕𝑧̄𝑙
+ ℂ̄𝑖𝑗𝑘𝛼

𝜕 ̄̃𝑢(0)𝑘

𝜕𝑥̄𝛼
+ ℂ̄𝑖𝑗𝑘𝑙

𝜕 ̄̃𝑢(1)𝑘

𝜕𝑧̄𝑙
+⋯ ,

(15)

respectively, where 𝑖, 𝑗, 𝑘, 𝑙 = 1, ⋯ , 𝑁 ; 𝛼 = 1, ⋯ , 𝑁 − 1; (x̄, z̄) ∈ ̄̃Ω × Υ̃s.
In Table 1, the scale separation formulas in the interior and the BL region are summarised in a comparative manner.
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2.3 Asymptotic analysis of the boundary layer effects
Now the asymptotic behaviour of Eq. (3) in the BL region ̄̃Ω is investigated. For simplicity, we temporarily neglect the role of
the body force f.

2.3.1 Leading-order formulation: preparation
At the leading order

( (
1∕𝜖2

))
, all conditions on the boundary sections of Υ̃s should be homogeneous, because the loads

applied never exceeds  (1). Therefore, the cell problem at  (
1∕𝜖2

)
is obtained as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕 ̄̃𝜎(−1)
𝑖𝑗

𝜕𝑧̄𝑗
= 𝜕

𝜕𝑧̄𝑗

(
ℂ̄𝑖𝑗𝑘𝑙

𝜕 ̄̃𝑢(0)𝑘

𝜕𝑧̄𝑙

)
= 0, in Υ̃s; (16a)

ℂ̄𝑖𝑗𝑘𝑙
𝜕 ̄̃𝑢(0)𝑘

𝜕𝑧̄𝑙
𝑚𝑗

||||||𝜕Υ̃i

= 0; (16b)

̄̃𝑢(0)𝑖 ,
𝜕 ̄̃𝑢(0)𝑖

𝜕𝑧̄𝑗
periodic on 𝜕Υ̃p; (16c)

ℂ̄𝑖𝑗𝑘𝑙
𝜕 ̄̃𝑢(0)𝑘

𝜕𝑧̄𝑙
𝑚𝑗

||||||𝜕Υ̃m

= ℂ̄𝑖𝑗𝑘𝑙
𝜕𝑢̄(0)𝑘

𝜕𝑧̄𝑙
𝑚𝑗

||||||𝜕Υm

= 0; (16d)

̄̃𝑢(0)𝑖
|||𝜕Υ̃e

= 𝑢̄0𝑖 . (16e)

It can be verified with ease that for problem (16) to hold, the zero-order displacement field of BL ̄̃𝑢(0)𝑖 should be independent of
z̄, that is,

̄̃𝑢(0)𝑖 (x̄; z̄) = ̄̃𝑢(0)𝑖 (x̄). (17)
Compared with the expansion for the inner displacement field given by Eq. (11a), Eq. (17) implies that the leading-order

displacement of the interior region can be naturally extended to the domain boundary, i.e.,

𝑢̄(0)𝑖
|||𝑥̄𝑁=0

= ̄̃𝑢(0)𝑖 . (18)

2.3.2 First-order formulation: derivation of BL cell problems

FIGURE 2 Demonstration of the actual BCs associated with a BL cell on the left edge of the MSC. The boundaries of voids
interior are represented by the notation 𝜕Υ̃i, on which traction-free BC (19b) is imposed; the upper and lower ones marked
in blue represents periodic boundaries (19c) on 𝜕Υ̃p; the boundary section on the right side of the BL cell, as marked in red,
represents the boundary 𝜕Υ̃m, on which matching condition with the interior cell is imposed, i.e., Eq. (19d); the boundary section
on the left side of Υ̃ in yellow represents the outer boundary 𝜕Υ̃e, which is set to be fixed here, i.e., Eq. (19e).
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At the first order ( (1∕𝜖)), the BL formulation is established in regard with the interior cell it joins with, as shown in Fig. 2.
With the BCs on different sections of the BL cell Υ̃ identified, the problem describing the force-equilibrated state at  (1∕𝜖) in
the BL cell reads ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕 ̄̃𝜎(0)
𝑖𝑗

𝜕𝑧̄𝑗
= 𝜕

𝜕𝑧̄𝑗

(
ℂ̄𝑖𝑗𝑘𝛼

𝜕 ̄̃𝑢(0)𝑘

𝜕𝑥̄𝛼
+ ℂ̄𝑖𝑗𝑘𝑙

𝜕 ̄̃𝑢(1)𝑘

𝜕𝑧̄𝑙

)
= 0, in Υ̃s; (19a)(

ℂ̄𝑖𝑗𝑘𝛼
𝜕 ̄̃𝑢(0)𝑘

𝜕𝑥̄𝛼
+ ℂ̄𝑖𝑗𝑘𝑙

𝜕 ̄̃𝑢(1)𝑘

𝜕𝑧̄𝑙

)
𝑚𝑗

||||||𝜕Υ̃i

= 0; (19b)

̄̃𝑢(1)𝑖 ,
𝜕 ̄̃𝑢(1)𝑖

𝜕𝑧̄𝑗
periodic on 𝜕Υ̃p; (19c)(

ℂ̄𝑖𝑗𝑘𝛼
𝜕 ̄̃𝑢(0)𝑘

𝜕𝑥̄𝛼
+ ℂ̄𝑖𝑗𝑘𝑙

𝜕 ̄̃𝑢(1)𝑘

𝜕𝑧̄𝑙

)
𝑚𝑗

||||||𝜕Υ̃m

= 𝜎̄(0)
𝑖𝑗 𝑚𝑗

|||𝜕Υm
; (19d)

̄̃𝑢(1)𝑖
|||𝜕Υ̃e

= 0. (19e)

It can be verified that the solution for problem (19) should take the form of

̄̃𝑢(1)𝑖 = 𝜉𝑠𝛼𝑖
𝜕𝑢̄(0)𝑠

𝜕𝑥̄𝛼
+ 𝜂̃𝑠𝑡𝑖

𝜕𝑢̄(0)𝑠

𝜕𝑥̄𝑡
, (20)

for 𝑖 = 1, ⋯ , 𝑁 , where the two third-order tensors 𝝃 and 𝜼 satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕
𝜕𝑧̄𝑗

(
ℂ̄𝑖𝑗𝑘𝛼𝛿𝑘𝑠𝛿𝛼𝛽 + ℂ̄𝑖𝑗𝑘𝑙

𝜕𝜉𝑠𝛽𝑘
𝜕𝑧̄𝑙

)
= 0, in Υ̃s; (21a)(

ℂ̄𝑖𝑗𝑘𝛼𝛿𝑘𝑠𝛿𝛼𝛽 + ℂ̄𝑖𝑗𝑘𝑙
𝜕𝜉𝑠𝛽𝑘
𝜕𝑧̄𝑙

)
𝑚𝑗

||||||𝜕Υ̃i

= 0; (21b)

𝜉𝑠𝛽𝑖 ,
𝜕𝜉𝑠𝛽𝑖
𝜕𝑧̄𝑗

periodic on 𝜕Υ̃p; (21c)(
ℂ̄𝑖𝑗𝑘𝛼𝛿𝑘𝑠𝛿𝛼𝛽 + ℂ̄𝑖𝑗𝑘𝑙

𝜕𝜉𝑠𝛽𝑘
𝜕𝑧̄𝑙

)
𝑚𝑗

||||||𝜕Υ̃m

= 0; (21d)

𝜉𝑠𝛽𝑖
|||𝜕Υ̃e

= 0, (21e)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕
𝜕𝑧̄𝑗

(
ℂ̄𝑖𝑗𝑘𝑙

𝜕𝜂̃𝑠𝑡𝑘
𝜕𝑧̄𝑙

)
= 0, in Υ̃s; (22a)

ℂ̄𝑖𝑗𝑘𝑙
𝜕𝜂̃𝑠𝑡𝑘
𝜕𝑧̄𝑙

𝑚𝑗

|||||𝜕Υ̃i

= 0; (22b)

𝜂̃𝑠𝑡𝑖 ,
𝜕𝜂̃𝑠𝑡𝑖
𝜕𝑧̄𝑗

periodic on 𝜕Υ̃p; (22c)

ℂ̄𝑖𝑗𝑘𝑙
𝜕𝜂̃𝑠𝑡𝑘
𝜕𝑧̄𝑙

𝑚𝑗

|||||𝜕Υ̃m

=

(
ℂ̄𝑖𝑗𝑠𝑡 + ℂ̄𝑖𝑗𝑘𝑙

𝜕𝜉𝑠𝑡𝑘
𝜕𝑧̄𝑙

)
𝑚𝑗

||||||𝜕Υm

; (22d)

𝜂̃𝑠𝑡𝑖 ||𝜕Υ̃e
= 0, (22e)

respectively.
Eq. (20) expresses ̄̃𝑢(1)𝑖 , the displacement field in the BL region, as the superposition of two terms, each one is given by means

of the product of a function solely on x̄ and the component of a third-order tensor to be solved for. Here problems (21) and (22)
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are collectively called the BL cell problems. To guarantee uniqueness of the solutions for the above two BL cell problems, a
zero-mean condition is applied to both 𝝃 and 𝜼, i.e.,

∫̃
Υs

𝜉𝑠𝛼𝑖 dz̄ = 0, ∫̃
Υs

𝜂̃𝑠𝑡𝑖 dz̄ = 0. (23)

It is noted that Eq. (21) defines a boundary value problem as such: an equilibrated BL cell with fixed outer boundary 𝜕Υ̃e, a
traction-free BC on the opposite side and periodic BCs on the other two sides. While for the BL cell problem (22), the matching
consitions (22d) of certain stress components with the virtual interior cell have to be considered on boundary 𝜕Υ̃m, rather than
a traction-free one.

With Eqs. (20), (21) and (22), the leading-order stress distribution of the BL cell is expressed by

̄̃𝜎(0)
𝑖𝑗 =

(
ℂ̄𝑖𝑗𝑘𝛼 + ℂ̄𝑖𝑗𝑠𝑡

𝜕𝜉𝑘𝛼𝑠
𝜕𝑧̄𝑡

)
𝜕𝑢̄(0)𝑘

𝜕𝑥̄𝛼
+ ℂ̄𝑖𝑗𝑠𝑡

𝜕𝜂̃𝑘𝑙𝑠
𝜕𝑧̄𝑡

𝜕𝑢̄(0)𝑘

𝜕𝑥̄𝑙
. (24)

It should be made clear that we here only consider the continuity of unknowns in two regions up to  (𝜖).

2.3.3 Second-order formulation: homogenisation
At the second order ( (1)), the homogenisation is conducted in the BL region. This is done by firstly writing down the force-
equilibrium equation at  (1), i.e.,

𝜕 ̄̃𝜎(0)
𝑖𝛼

𝜕𝑥̄𝛼
+

𝜕 ̄̃𝜎(1)
𝑖𝑗

𝜕𝑧̄𝑗
= 0. (25)

Integrating Eq. (25) with respect to the micro variable z̄ over the solid domain Υ̃s, gives

𝜕
𝜕𝑥̄𝛼 ∫̃

Υs

̄̃𝜎(0)
𝑖𝛼 dz̄ + ∫̃

Υs

𝜕 ̄̃𝜎(1)
𝑖𝑗

𝜕𝑧̄𝑗
dz̄ = 0. (26)

The second term on the left of Eq. (26) can be transformed into a boundary integral with the use of Green’s formula, i.e.,

∫̃
Υs

𝜕 ̄̃𝜎(1)
𝑖𝑗

𝜕𝑧̄𝑗
dz̄ = ∫

𝜕Υ̃i+𝜕Υ̃p+𝜕Υ̃e+𝜕Υ̃m

̄̃𝜎(1)
𝑖𝑗 𝑚𝑗 d𝑆, (27)

where d𝑆 is the infinitesimal arclength/area taken from the cell boundary.
Several remarks are noted regarding Eq. (27). Firstly, as stated in Sec. 2.1, no traction or pressure will be imposed from the void

interiors, so the integral on boundary 𝜕Υ̃i should vanish. Secondly, the local-periodicity assumption indicates that the integral
on boundary 𝜕Υ̃p also vanishes. Thirdly, sum of the last two integral terms is zero due to the  (𝜖) force balance condition on
two opposite boundaries, i.e, the total force applied on the outer boundary 𝜕Υ̃e should be balanced with the total force due to
the virtual interior cell. As a result, the boundary integral on the right side of Eq. (27) vanishes, thus the second term on the left
of Eq. (26) equals zero eventually, i.e.,

𝜕
𝜕𝑥̄𝛼 ∫̃

Υs

̄̃𝜎(0)
𝑖𝛼 dz̄ = 0. (28)

Incorporating Eq. (24) into Eq. (28) gives

𝜕
𝜕𝑥̄𝛼

⎡⎢⎢⎢⎣
𝜕𝑢̄(0)𝑘

𝜕𝑥̄𝛽 ∫̃
Υs

(
ℂ̄𝑖𝛼𝑘𝛽 + ℂ̄𝑖𝛼𝑠𝑡

𝜕𝜉𝑘𝛽𝑠
𝜕𝑧̄𝑡

)
dz̄ +

𝜕𝑢̄(0)𝑘

𝜕𝑥̄𝑙 ∫̃
Υs

ℂ̄𝑖𝛼𝑠𝑡
𝜕𝜂̃𝑘𝑙𝑠
𝜕𝑧̄𝑡

dz̄
⎤⎥⎥⎥⎦ = 0, on 𝜕Ω̄. (29)

If we further define

̄̃ℂH
𝑖𝛼𝑘𝛽 = ∫̃

Υs

(
ℂ̄𝑖𝛼𝑘𝛽 + ℂ̄𝑖𝛼𝑠𝑡

𝜕𝜉𝑘𝛽𝑠
𝜕𝑧̄𝑡

+ ℂ̄𝑖𝛼𝑠𝑡
𝜕𝜂̃𝑘𝛽𝑠
𝜕𝑧̄𝑡

)
dz̄; (30a)

̄̃ℂH
𝑖𝑗𝑘𝑁 = ∫̃

Υs

ℂ̄𝑖𝑗𝑠𝑡
𝜕𝜂̃𝑘𝑁𝑠
𝜕𝑧̄𝑡

dz̄, (30b)
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Eq. (29) can be simplified as
𝜕
𝜕𝑥̄𝛼

(
̄̃ℂH
𝑖𝛼𝑘𝛽

𝜕𝑢̄H𝑘
𝜕𝑥̄𝛽

+ ̄̃ℂH
𝑖𝛼𝑘𝑁

𝜕𝑢̄H𝑘
𝜕𝑥̄𝑁

)
= 0, on 𝜕Ω̄, (31)

where the indices 𝛼, 𝛽 = 1, ⋯ , 𝑁 − 1.
Note that ̄̃ℂH

𝑖𝛼𝑘𝑙 defined through Eqs. (30) play a same role as the surface elasticity moduli introduced in classical Gurtin-
Murdoch surface elasticity theory35,36. Several issues should be mentioned in regards. Firstly, from their subindices, it can be
observed that the range of the second index 𝛼 = 1, ⋯ , 𝑁 − 1 differs from that of its other indices 𝑖, 𝑘, 𝑙 = 1, ⋯ , 𝑁 . Hence
̄̃ℂH
𝑖𝛼𝑘𝑙 bear 𝑁3 × (𝑁 − 1) entries, distinguishing it from the normal fourth-order elasticity tensor defined in the domain interior.

Secondly, the (nondimensional) surface elasticity coefficients (SEC) ̄̃ℂH
𝑖𝛼𝑘𝑙 also bear certain symmetry about the components,

but only in the plane tangent to the overall domain boundary. Thirdly, experimental evaluation of the SEC still faces difficulties
for the moment, but suggestions on their numerical evaluation upon homogenising the underlying atomic structures have been
proposed37.

Eq. (31) offers to describe the actual force-equilibrium state in the vicinity of the multiscale boundary. It is an equation defined
on a manifold, which may bring about difficulties in finding its numerical solutions, especially when the profile of the boundary
is of certain degree of complexities.

2.4 Energy formulation
The multiscale behaviour formulated as above can also be studied from a perspective of system energy. First of all, for a deformed
multiscale body in elastic stage, its (nondimensional) strain energy is defined by

̄ = 1
2 ∫̄

Ω

𝜎̄𝑖𝑗
𝜕𝑢̄𝑖
𝜕𝑥̄𝜖𝑗

dx̄𝜖 , (32)

where the superscript “𝜖” implies the corresponding variable links both the macro and micro variables. In the context of
homogenisation, integration over a multiscale domain, with Eq. (32) being an example, can be reformulated in a scale-separated
manner38. It relies on an asymptotic formula of

lim
𝜖→0 ∫

Ω̄∖ ̄̃Ω

ℎ𝜖(x̄𝜖) dx̄𝜖 = ∫
Ω̄∖ ̄̃Ω

−∫ Υ
ℎ(0)(x̄; z̄) dz̄ dx̄, (33)

where ℎ𝜖(x̄𝜖) is the original quasi-periodic function, and ℎ(0)(x̄; z̄) is the leading-order for its two-scale expansion.
In a similar sense, the idea can be generalised to an asymptotic formula associated with the BL, i.e.,

lim
𝜖→0 ∫̃̄

Ω

ℎ𝜖(x̄𝜖) dx̄𝜖 = ∫
𝜕Ω̄

𝛿 −∫ Υ̃
ℎ(0)(x̄; z̄) dz̄ d𝑆x̄, (34)

where 𝛿 = 𝑑∕𝐿 is the nondimensional thickness of the BL, d𝑆x̄ represents the infinitesimal arclength on boundary 𝜕Ω̄. A short
bar added to the integral sign indicates the result is averaged over the integration domain: −∫ Υℎ(x̄; z̄) dz̄ = 1|Υ| ∫Υ ℎ(x̄; z̄) dz̄, with|Υ| being the area or volume of the analysed cell.

With Eq. (34), one can calculate the elastic energy in the vicinity of the overall MSC boundary in two steps. First, the
(homogenised) elastic energy density is calculated through integrals over the BL cell. Note that upon integration over the BL
cell, the obtained quantity becomes homogenised and is defined merely on the macroscopic boundary. Therefore, this energy
density quantity is effectively the surface energy density. Then the system surface energy should be calculated by integrating
the surface energy density over the whole surface 𝜕Ω̄.

Equipped with such strategy, we can combining Eqs. (32) and (33) to get the  (1) approximation of (nondimensional) energy
formulation due to the interior region

̄in ≈
1
2 ∫
Ω̄∖ ̄̃Ω

∫
Υs

𝜎̄(0)
𝑖𝑗

(
𝜕𝑢̄(0)𝑖

𝜕𝑥̄𝑗
+

𝜕𝜉𝑠𝑡𝑖
𝜕𝑧̄𝑗

𝜕𝑢̄(0)𝑠

𝜕𝑥̄𝑡

)
dz̄ dx̄. (35)
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Note that the second term on the right of Eq. (35) can be eliminated by using the BCs and  (1∕𝜖) equilibrium equation, i.e.,

∫
Υs

𝜎̄(0)
𝑖𝑗

𝜕𝜉𝑠𝑡𝑖
𝜕𝑧̄𝑗

𝜕𝑢̄(0)𝑠

𝜕𝑥̄𝑡
dz̄ =

𝜕𝑢̄(0)𝑠

𝜕𝑥̄𝑡

⎛⎜⎜⎜⎝ ∫
𝜕Υi+𝜕Υp

𝜎̄(0)
𝑖𝑗 𝑚𝑗𝜉

𝑠𝑡
𝑖 d𝑆 − ∫

Υs

𝜕𝜎̄(0)
𝑖𝑗

𝜕𝑧̄𝑗
𝜉𝑠𝑡𝑖 dz̄

⎞⎟⎟⎟⎠ = 0. (36)

Thus the nondimensional leading-order elastic energy due to the domain interior is calculated by

̄in ≈
1
2 ∫
Ω̄∖ ̄̃Ω

∫
Υs

𝜎̄(0)
𝑖𝑗 dz̄

𝜕𝑢̄(0)𝑖

𝜕𝑥̄𝑗
dx̄ = 1

2 ∫
Ω̄∖ ̄̃Ω

ℂ̄H
𝑖𝑗𝑘𝑙

𝜕𝑢̄(0)𝑖

𝜕𝑥̄𝑗

𝜕𝑢̄(0)𝑘

𝜕𝑥̄𝑙
dx̄. (37)

The leading-order nondimensional elastic energy due to the BL region can also be calculated with reference to Eq. (34), i.e.,

̄̃b ≈
𝛿
2 ∫
𝜕Ω̄d

∫̃
Υs

(
̄̃𝜎(0)
𝑖𝛼

𝜕𝑢̄(0)𝑖

𝜕𝑥̄𝛼
+ ̄̃𝜎(0)

𝑖𝑗

𝜕 ̄̃𝑢(1)𝑖

𝜕𝑧̄𝑗

)
dz̄ d𝑆x̄

= 𝛿
2 ∫
𝜕Ω̄d

∫̃
Υs

(
̄̃𝜎(0)
𝑖𝛼

𝜕𝑢̄(0)𝑖

𝜕𝑥̄𝛼
+ ̄̃𝜎(0)

𝑖𝑗

𝜕𝜉𝑠𝛼𝑖
𝜕𝑧̄𝑗

𝜕𝑢̄(0)𝑠

𝜕𝑥̄𝛼
+ ̄̃𝜎(0)

𝑖𝑗

𝜕𝜂̃𝑠𝑡𝑖
𝜕𝑧̄𝑗

𝜕𝑢̄(0)𝑠

𝜕𝑥̄𝑡

)
dz̄ d𝑆x̄,

(38)

similar as in the operation of Eq. (36), the two integral terms concerning 𝝃 and 𝜼 can be further simplified by

∫̃
Υs

̄̃𝜎(0)
𝑖𝑗

𝜕𝜉𝑠𝛼𝑖
𝜕𝑧̄𝑗

𝜕𝑢̄(0)𝑠

𝜕𝑥̄𝛼
dz̄ =

𝜕𝑢̄(0)𝑠

𝜕𝑥̄𝛼 ∫
𝜕Υ̃m

̄̃𝜎(0)
𝑖𝑗 𝑚𝑗𝜉

𝑠𝛼
𝑖 d𝑆; (39a)

∫̃
Υs

̄̃𝜎(0)
𝑖𝑗

𝜕𝜂̃𝑠𝑡𝑖
𝜕𝑧̄𝑗

𝜕𝑢̄(0)𝑠

𝜕𝑥̄𝑡
dz̄ =

𝜕𝑢̄(0)𝑠

𝜕𝑥̄𝑡 ∫
𝜕Υ̃m

̄̃𝜎(0)
𝑖𝑗 𝑚𝑗 𝜂̃

𝑠𝑡
𝑖 d𝑆, (39b)

where the fixed displacement BCs on the exterior boundary section 𝜕Υ̃e has been used.
As a corollary, the leading-order (nondimensional) energy stored in the BL region of an MSC is given by

̄̃b ≈
𝛿
2

⎛⎜⎜⎜⎝∫𝜕Ω̄d

̄̃ℂH
𝑖𝛼𝑘𝑙

𝜕𝑢̄(0)𝑖

𝜕𝑥̄𝛼

𝜕𝑢̄(0)𝑘

𝜕𝑥̄𝑙
d𝑆x̄ + ∫

𝜕Ω̄d

∫
𝜕Υ̃m

̄̃𝜎(0)
𝑖𝑗 𝑚𝑗𝜉

𝑠𝛼
𝑖

𝜕𝑢̄(0)𝑠

𝜕𝑥̄𝛼
d𝑆 d𝑆x̄ + ∫

𝜕Ω̄d

∫
𝜕Υ̃m

̄̃𝜎(0)
𝑖𝑗 𝑚𝑗 𝜂̃

𝑠𝑡
𝑖

𝜕𝑢̄(0)𝑠

𝜕𝑥̄𝑡
d𝑆 d𝑆x̄

⎞⎟⎟⎟⎠ . (40)

Therefore, the total nondimensional elastic energy stored in an MSC can roughly be evaluated by the sum of ̄in and ̄̃b.
Nonetheless, evaluating these two energy portions involves the specification of the BL region ̄̃Ω, which may cause ambiguities.
For improvement, one may introduce a (nondimensional) bulk energy quantity which is obtained by naturally extending the
interior energy density form right to the domain boundary, i.e.,

̄bulk = 1
2 ∫̄

Ω

ℂ̄H
𝑖𝑗𝑘𝑙

𝜕𝑢̄H𝑖
𝜕𝑥̄𝑗

𝜕𝑢̄H𝑘
𝜕𝑥̄𝑙

dx̄. (41)

Here ̄bulk differs from ̄in by

̄bulk − ̄in =
1
2 ∫̃̄

Ω

ℂ̄H
𝑖𝑗𝑘𝑙

𝜕𝑢̄H𝑖
𝜕𝑥̄𝑗

𝜕𝑢̄H𝑘
𝜕𝑥̄𝑙

dx̄ = 𝛿
2 ∫
𝜕Ω̄d

ℂ̄H
𝑖𝑗𝑘𝑙

𝜕𝑢̄H𝑖
𝜕𝑥̄𝑗

𝜕𝑢̄H𝑘
𝜕𝑥̄𝑙

d𝑆x̄, (42)

where Eq. (34) has been adopted to derive the second identity of Eq. (42).
With ̄bulk defined by Eq. (41), the residual amount of (nondimensional) elastic energy is given by a quantity ̄surf purely

defined over the domain boundary 𝜕Ω̄, that is,

̄surf = ̄̃b −
𝛿
2 ∫
𝜕Ω̄d

ℂ̄H
𝑖𝑗𝑘𝑙

𝜕𝑢̄H𝑖
𝜕𝑥̄𝑗

𝜕𝑢̄H𝑘
𝜕𝑥̄𝑙

d𝑆x̄. (43)
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Combining the expression for ̄̃b (Eq. (40)) with Eq. (43), we have

̄surf =
𝛿
2

⎡⎢⎢⎢⎣∫𝜕Ω̄d

(
̄̃ℂH
𝑖𝛼𝑘𝑙 − ℂ̄H

𝑖𝛼𝑘𝑙

) 𝜕𝑢̄H𝑖
𝜕𝑥̄𝛼

𝜕𝑢̄H𝑘
𝜕𝑥̄𝑙

d𝑆x̄ − ∫
𝜕Ω̄d

ℂ̄H
𝑖𝑁𝑘𝑙

𝜕𝑢̄H𝑖
𝜕𝑥̄𝑁

𝜕𝑢̄H𝑘
𝜕𝑥̄𝑙

d𝑆x̄ + ∫
𝜕Ω̄d

∫
𝜕Υ̃m

̄̃𝜎(0)
𝑖𝑗 𝑚𝑗 ̄̃𝑢

(1)
𝑖 d𝑆 d𝑆x̄

⎤⎥⎥⎥⎦ . (44)

Several issues are worth being mentioned with regard to the energy quantities introduced above.
Firstly, the energy formulation derived here is linked with the force equilibrium equations given in Sec. 2.3. To be precise, the

minimisation of ̄bulk+̄surf less the nondimensional work done to the system should lead to the surface balance equation (31).
Secondly, for elliptic Dirichlet problems, the effect introduced by the BL decays exponentially as the variable perpendicular

to the boundary increases31. Thus for an MSC, the thickness of the BL (𝑑), which is taken to be similar as the cell size, is a
small quantity compared with the overall domain size (𝐿), i.e., 𝛿 = 𝑑∕𝐿 → 0. This means

lim
𝛿→0

̄surf∕̄bulk = 0. (45)

Here for simplicity, the contribution from the surface energy is neglected for modelling the BL effect.

2.5 Re-dimensionalisation
To facilitate subsequent computation, we now summarise the key formulation derived above in a dimensional sense. This is
normally done by simply removing the symbol “–” in the original nondimensional formulation. Here for simplicity, we ignore
the energy contribution from the BL of an MSC, but only consider the BL effect on the actual stress distribution. To this end,
one simply solves for the homogenised stress field 𝜎H

𝑖𝑗 (and the homogenised displacement field 𝑢H𝑖 ) in the same way as the
traditional AH approach. Once the homogenised problem is solved, the actual fine-scale stress distribution with an interior cell
and a BL cell, based on Eqs. (11b) and (24), can be approximated by

𝜎𝑖𝑗 ≈

(
ℂ𝑖𝑗𝑘𝑙 + ℂ𝑖𝑗𝑠𝑡

𝜕𝜉𝑘𝑙𝑠
𝜕𝑧̄𝑡

)
𝜕𝑢H𝑘
𝜕𝑥𝑙

; (46a)

𝜎̃𝑖𝑗 ≈

(
ℂ𝑖𝑗𝑘𝛼 + ℂ𝑖𝑗𝑠𝑡

𝜕𝜉𝑘𝛼𝑠
𝜕𝑧̄𝑡

)
𝜕𝑢H𝑘
𝜕𝑥𝛼

+ ℂ𝑖𝑗𝑠𝑡
𝜕𝜂̃𝑘𝑙𝑠
𝜕𝑧̄𝑡

𝜕𝑢H𝑘
𝜕𝑥𝑙

. (46b)

3 BOUNDARY LAYER FORMULATION IN MORE GENERALISED SITUATIONS

In the previous section, the discussion is limited to the situation of spatially periodic MSC subject to displacement BCs. However,
in this section, BL formulation in more generalised scenarios will be considered. Our investigations will be extended for SVMSC
and/or for traction BCs. Throughout the section, emphasis will be drawn over the issue on how the generalised situations differ
from the reference case that is examined in detail in Sec. 2.

3.1 Situation with applied traction
Generalisation over the displacement type of imposed BC is firstly studied. To this end, we here consider the BC with an applied
traction field t0 on 𝜕Ωt , i.e.,

ℂ𝑖𝑗𝑘𝑙
𝜕𝑢𝑘
𝜕𝑥𝜖𝑙

𝑛𝑗
|||||𝜕Ωt

= 𝑡0𝑖 , for 𝑖 = 1, ⋯ , 𝑁. (47)

Such a change in BC should lead to hierarchic modifications as follows.
At (1∕𝜖2), the BC on the outer boundary in problem (16) should be changed to be ℂ̄𝑖𝑗𝑘𝑙

𝜕 ̄̃𝑢(0)𝑘

𝜕𝑧̄𝑙
𝑚𝑗

||||𝜕Υ̃e

= 0, but this does not

affect the conclusions originally drawn at this order. The leading-order BL displacement field is still found independent of the
microscopic coordinates z̄, and the natural extension in the interior displacement field up to the structural boundary, i.e., Eq. (18)
still holds.

At (1∕𝜖), traction BCs are expected on the outer cell boundary 𝜕Υ̃e. Now as the external loads are imposed both on 𝜕Υ̃e
and matching boundary 𝜕Υ̃m, there is an issue on solution existence, i.e., the traction BCs must be declared, such that the total
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traction applied to the BL cell vanishes. When the change in BC for the cell problem related to variable 𝝃, corresponding to
problem (21), is considered, Eq. (21e) becomes

𝜉𝑠𝛽𝑘
|||𝜕Υ̃e

= 0 ⇐⇒

(
ℂ̄𝑖𝑗𝑘𝛼𝛿𝑘𝑠𝛿𝛼𝛽 + ℂ̄𝑖𝑗𝑘𝑙

𝜕𝜉𝑠𝛽𝑘
𝜕𝑧̄𝑙

)
𝑚𝑗

||||||𝜕Υ̃e

= 0. (48)

But to modify the BC in cell problem (22) for variable 𝜼, extra treatments are needed. Given that the (nondimensional) traction
𝐭̄0 are a macroscopically defined field, the corresponding components can be roughly treated uniform on 𝜕Υ̃e in the BL cell. The
overall balance condition thus reads

𝑡0𝑖 =
1|𝜕Υ̃e| ∫

𝜕Υ̃m

𝜎̄(0)
𝑖𝑗 𝑚𝑗 dΓ = Σ(0)

𝑖𝑘𝑙

𝜕𝑢̄(0)𝑘

𝜕𝑥̄𝑙
, (49)

where

Σ(0)
𝑖𝑘𝑙 =

1|𝜕Υ̃e| ∫
𝜕Υ̃m

(
ℂ̄𝑖𝑗𝑘𝑙 + ℂ̄𝑖𝑗𝑠𝑡

𝜕𝜉𝑘𝑙𝑠
𝜕𝑧̄𝑡

)
𝑚𝑗 dΓ, (50)

are the effective and microscopically uniform traction components so as to meet the overall balance requirement.
Thus the cell problem for variable 𝜼 can be established if one swaps Eq. (22e) by

𝜂̃𝑠𝑡𝑘 ||𝜕Υ̃e
= 0 ⇐⇒ ℂ̄𝑖𝑗𝑘𝑙

𝜕𝜂̃𝑠𝑡𝑘
𝜕𝑧̄𝑙

𝑚𝑗

|||||𝜕Υ̃e

= Σ(0)
𝑖𝑠𝑡 , (51)

and the solution existence of the resulting cell problem can be ensured simultaneously.
At  (1), the change in the type of imposed BC should not affect the form of the homogenisation formula, although the

effective BL formulation is different because of the change in 𝝃 and 𝜼 by Eqs. (48) and (51).

3.2 Spatially-varying microstructures
In practical, microstructure may be filled in a region bearing irregular shape, and the infilling microstructure may have to be
gradually varying in space then, as the one shown in the right panel of Fig. 3.

FIGURE 3 Representation of an MSC decorated with gradually-varying microstructure (right panel), which can be generated
by space distortion enabled with a macroscopically smooth mapping function y = y (x).

3.2.1 Geometric representation and spatial transformation
As discussed by Zhu et al.18, the essence in the representation of an SVMSC is to introduce a macroscopically smooth mapping
function, say, y = y (x), such that the configuration becomes periodic when measured in ȳ coordinates, as shown in Fig. 3.
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In theory, the choice for this mapping function is rather arbitrary. But restrictions are normally required for more practical
usage. For instance, maintaining the completeness in cell geometry at multiscale boundaries seems quite critical for the whole
structure serving as qualified tuning devices of acoustic wave. Nonetheless, for a given domain in which microstructure will
be infilled in, it is not an easy task to ensure such cell completeness at the boundary. To this end, the mapping function here is
specified to be the B-spline function, because they are often employed to determine the profile of a component digitalised from
the computer aided design (CAD) platform.

In contrast with the mapping operation adopted by Zhu et al.18, we here consider using B-spline function to map a periodic
structure to an SVMSC, which is effectively x = y−1(y) with reference to Fig. 3. Suppose such a mapping function is given by
x = S(y). Then the specific expression of B-spline function reads

S(𝑦1, 𝑦2) =
𝑛−1∑
𝑖=0

𝑚−1∑
𝑗=0

𝑁𝑖,𝑝(𝑦1)𝑁𝑗,𝑞(𝑦2)P𝑖,𝑗 , (52)

where, P𝑖,𝑗 =
(
𝑥1𝑖𝑗 , 𝑥

2
𝑖𝑗

)
∈ ℝ2 represent the coordinates of the 𝑛 × 𝑚 control points, 𝑁𝑖,𝑝(𝑦1) and 𝑁𝑗,𝑞(𝑦2) are the B-spline

basis functions (piecewise polynomials) of degree 𝑝 and 𝑞, which are determined by the knot vectors 𝑈1×(𝑛+𝑝+1) and 𝑉1×(𝑚+𝑞+1),
respectively. One can refer to Appendix B for greater details associated with B-spline and the parameters adopted.

Among many properties of B-spline functions39, the most intuitive benefit of adopting B-spline is its capability accommo-
dating local adjustment. As the position of control points P𝑖,𝑗 gets changed, only the function values of S(y) within the region
(𝑦1, 𝑦2) ∈ [𝑦1𝑖 , 𝑦

1
𝑖+𝑝+1) × [𝑦2𝑗 , 𝑦

2
𝑗+𝑞+1) is affected, which enables us to freely change the geometry of the model as well as the

geometry of microstructure inside, by simply moving the control points. Besides, as long as the periodic structure bears com-
plete cells in the BL, as shown in Fig. 3, the cell completeness in the resulting SVMSC with the use of B-spline mapping is
automatically guaranteed.

With the linkage between an SVMSC and a periodic structure established, the AH formulation is then enabled for the interior
of the configuration18.

Here the spatially variance is taken into account by means of the spatial gradient of the mapping function, i.e.,

J𝑖𝑗 =
𝜕𝑦𝑖
𝜕𝑥𝑗

, for 𝑖, 𝑗 = 1, ⋯ , 𝑁. (53)

Upon spatial transformation, locally periodic oscillation can be assured w.r.t. the coordinates measured in ȳ. Therefore, for an
SVMSC, the (nondimensional) local coordinates should be defined by

z̄ =
y(x)
ℎ

, (54)

where ℎ is recalled to be a parameter characterising the length of the microscopic cell, and scale separation here is then introduced
by

𝜕
𝜕𝑥̄𝜖𝑖

= 𝜕
𝜕𝑥̄𝑖

+
J𝑘𝑖
𝜖

𝜕
𝜕𝑧̄𝑘

, (55)

in the interior domain. For greater details about the asymptotic expansions of quantities in the SVMSC interior, one may refer
to Ref.18.

Such a rule for scale separation can be extended to the BL formulation. Here a natural coordinate system attached to the BL of
an SVMSC is constructed, i.e., at each BL section, we always let 𝑥𝑁 = 0. Hence, we have 𝜕𝑦̄𝛼∕𝜕𝑥̄𝑁 = 0, 𝜕𝑦̄𝑁∕𝜕𝑥̄𝑁 = 1. Thus
the last component of z̄, i.e., 𝑧̄𝑁 , stays perpendicular to the boundary of the referenced periodic configuration, such as the one
on the left side of Fig. 3. This is equivalent to say that 𝑥̄𝑁 is along the direction perpendicular to the actual domain boundary.

To this end, we introduce in association with the BL the same local coordinates as Eq. (54), and scale separation in the BL
region is carried out by

𝜕
𝜕𝑥̄𝜖𝛼

= 𝜕
𝜕𝑥̄𝛼

+
J𝑘𝛼
𝜖

𝜕
𝜕𝑧̄𝑘

; 𝜕
𝜕𝑥̄𝜖𝑁

=
J𝑘𝑁
𝜖

𝜕
𝜕𝑧̄𝑘

. (56)

In Table 2, the scale-separation operations are summarised within both the SVMSC interior and the BL in a comparative
manner.
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TABLE 2 Multiscale assumptions (after nondimensionalisation) of the interior and the BL regions of configurations infilled
with spatially-varying microstructure.

Interior Region Boundary Layer Region

Rescale z̄ = ȳ∕𝜖 z̄ = ȳ∕𝜖

Free 𝑥̄𝑖 ∈ Ω̄∖ ̄̃Ω, 𝑧̄𝑖 ∈ Υs 𝑥̄𝛼 ∈ ̄̃Ω, 𝑧̄𝑖 ∈ Υ̃s

Variables 𝑖 = 1, ⋯ , 𝑁 𝛼 = 1, ⋯ , 𝑁 − 1; 𝑖 = 1, ⋯ , 𝑁

Scale 𝜕
𝜕𝑥̄𝜖𝑖

= 𝜕
𝜕𝑥̄𝑖

+ J𝑘𝑖
𝜖

𝜕
𝜕𝑧̄𝑘

𝜕
𝜕𝑥̄𝜖𝛼

= 𝜕
𝜕𝑥̄𝛼

+ J𝑘𝛼
𝜖

𝜕
𝜕𝑧̄𝑘

Separation 𝜕
𝜕𝑥̄𝜖𝑁

= J𝑘𝑁
𝜖

𝜕
𝜕𝑧̄𝑘

3.2.2 Boundary layer formulation
Upon scale separation, the AH formulation can be derived against the SVMSC. In parallel with the derivation in Sec. 2.3.2, we
first give a pair of BL cell problems for variables 𝝃 and 𝜼, that is,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

J𝑚𝑗
𝜕

𝜕𝑧̄𝑚

(
ℂ̄𝑖𝑗𝑘𝛼𝛿𝑘𝑠𝛿𝛼𝛽 + ℂ̄𝑖𝑗𝑘𝑙J𝑟𝑙

𝜕𝜉𝑠𝛽𝑘
𝜕𝑧̄𝑟

)
= 0, in Υ̃s; (57a)(

ℂ̄𝑖𝑗𝑘𝛼𝛿𝑘𝑠𝛿𝛼𝛽 + ℂ̄𝑖𝑗𝑘𝑙J𝑟𝑙
𝜕𝜉𝑠𝛽𝑘
𝜕𝑧̄𝑟

)
J𝑚𝑗𝑠𝑚

||||||𝜕Υ̃i

= 0; (57b)

𝜉𝑠𝛽𝑖 ,
𝜕𝜉𝑠𝛽𝑖
𝜕𝑧̄𝑗

periodic on 𝜕Υ̃p; (57c)(
ℂ̄𝑖𝑗𝑘𝛼𝛿𝑘𝑠𝛿𝛼𝛽 + ℂ̄𝑖𝑗𝑘𝑙J𝑟𝑙

𝜕𝜉𝑠𝛽𝑘
𝜕𝑧̄𝑟

)
J𝑚𝑗𝑠𝑚

||||||𝜕Υ̃m

= 0; (57d)

𝜉𝑠𝛽𝑖
|||𝜕Υ̃e

= 0, (57e)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

J𝑚𝑗
𝜕

𝜕𝑧̄𝑚

(
ℂ̄𝑖𝑗𝑘𝑙J𝑟𝑙

𝜕𝜂̃𝑠𝑡𝑘
𝜕𝑧̄𝑟

)
= 0, in Υ̃s; (58a)

ℂ̄𝑖𝑗𝑘𝑙J𝑟𝑙
𝜕𝜂̃𝑠𝑡𝑘
𝜕𝑧̄𝑟

J𝑚𝑗𝑠𝑚
|||||𝜕Υ̃i

= 0; (58b)

𝜂̃𝑠𝑡𝑖 ,
𝜕𝜂̃𝑠𝑡𝑖
𝜕𝑧̄𝑗

periodic on 𝜕Υ̃p; (58c)

ℂ̄𝑖𝑗𝑘𝑙J𝑟𝑙
𝜕𝜂̃𝑠𝑡𝑘
𝜕𝑧̄𝑟

𝑚𝑗

|||||𝜕Υ̃m

=

(
ℂ̄𝑖𝑗𝑠𝑡 + ℂ̄𝑖𝑗𝑘𝑙J𝑟𝑙

𝜕𝜉𝑠𝑡𝑘
𝜕𝑧̄𝑟

)
J𝑚𝑗𝑠𝑚

||||||𝜕Υm

; (58d)

𝜂̃𝑠𝑡𝑖 ||𝜕Υ̃e
= 0, (58e)

where s is the outer normal at a boundary point of the cell after mapping, and the Dirichlet BCs are imposed at the SVMSC
boundary for the moment.

With the two variables 𝝃 and 𝜼 fully determined, the fine-scale stress field of the BL can be resolved by

𝜎̃(0)
𝑖𝑗 =

(
ℂ𝑖𝑗𝑘𝛼 + ℂ𝑖𝑗𝑠𝑡J𝑟𝑡

𝜕𝜉𝑘𝛼𝑠
𝜕𝑧̄𝑟

)
𝜕𝑢(0)𝑘

𝜕𝑥𝛼
+ ℂ𝑖𝑗𝑠𝑡J𝑟𝑡

𝜕𝜂̃𝑘𝑙𝑠
𝜕𝑧̄𝑟

𝜕𝑢(0)𝑘

𝜕𝑥𝑙
. (59)
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If the SVMSC is applied with an external load 𝐭̄0 at the boundary, the original displacement BCs in the BL cell problems
(57) and (58) should be swapped by (

ℂ̄𝑖𝑗𝑘𝛼𝛿𝑘𝑠𝛿𝛼𝛽 + ℂ̄𝑖𝑗𝑘𝑙J𝑟𝑙
𝜕𝜉𝑠𝛽𝑘
𝜕𝑧̄𝑟

)
J𝑚𝑗𝑠𝑚

||||||𝜕Υ̃e

= 0, (60)

and
ℂ̄𝑖𝑗𝑘𝑙J𝑟𝑙

𝜕𝜂̃𝑠𝑡𝑘
𝜕𝑧̄𝑟

J𝑚𝑗𝑠𝑚
|||||𝜕Υ̃e

= Σ(0)
𝑖𝑠𝑡 , (61)

respectively. Here the microscopically uniform traction components Σ(0)
𝑖𝑠𝑡 take the same definition as implied by Eq. (50).

3.3 Situations with different boundary orientations
The derivation above limits itself in situation where the overall boundary section of interest stays coincident with the plane
𝜕Ω̄ =

{
x̄ ∣ 𝑥̄𝑁 = 0

}
. When boundary sections bearing a different orientation, generalisation from the present results is necessary.

The key idea is to transform the BL solutions intended for the boundary 𝑥𝑁 = 0 in accordance with the boundary of interest.
For example, the solutions for two types of BL cell problems on a certain boundary are assumed to be 𝜉𝑗𝛼𝑖 , 𝜂̃𝑗𝑘𝑖 , then for BL cells
composed of isotropic base materials, their solutions can be associated with the original ones (with a symbol “∧”) through the
following formula

𝜉𝑗𝛼𝑖 = Q𝑖𝑘 Q𝑗𝑠 Q𝛼𝛽
̂̃𝜉𝑠𝛽𝑘 ; (62a)

𝜂̃𝑗𝑘𝑖 = Q𝑖𝑟 Q𝑗𝑠 Q𝑘𝑡 ̂̃𝜂
𝑠𝑡
𝑟 , (62b)

where Q is a certain orthogonal matrix, and the relevant proof is available in Appendix A.

4 COMPUTATIONAL FEASIBILITY ENABLED BY MACHINE LEARNING

With the asymptotic expressions provided, we now consider using surrogate models (referring exclusively to the neural networks,
or abbreviated as NNs) for predicting the local maximum von Mises stress (LMvMS) at each point near the boundary on this
basis. Note that the relationship between the equivalent elasticity tensor in the SVMSC interior and the corresponding cell
geometry should be superseded by a surrogate model likewise. But since the issue has been elaborated in the work of Ma et
al.40, we are mainly focused on adopting the NNs to represent related solutions for the BL cell problem.

4.1 Localisation
Localised properties, such as strength, always see their priorities of engineering concerns which reflects the widespread demand
for the efficient prediction of the stress and location of local failure in such multiscale structures. However, performing locali-
sation operation on the basis of homogenisation results usually suffers from methodological paradox. Homogenisation tends to
return mean-field results, while material strength highly depends on the local geometric details. Besides being different from the
interior of an MSC, the BL region is often more susceptible to failure initiation. Here we investigate the localisation formulation
for the prediction of the LMvMSes near the boundary of an MSC.

As from the AH results, zero-order stress tensors 𝜎̃(0)
𝑖𝑗 inside the BL region are obtained (Eqs. (46b), (59)), whose correspond-

ing eigenvalue problems yield the principal stresses: 𝜎̃(0)
I > 𝜎̃(0)

II > 𝜎̃(0)
III (from large to small). Then the von Mises stress of a

particular point in the cell can be calculated by

𝜎̃(0)
vM =

√√√√√(
𝜎̃(0)

I − 𝜎̃(0)
II

)2
+
(
𝜎̃(0)

II − 𝜎̃(0)
III

)2
+
(
𝜎̃(0)

III − 𝜎̃(0)
I

)2

2
. (63)

Suppose the configuration is made of materials which can withstand a maximum equivalent stress of 𝜎∗
max. Thus for safety

assessment, the inequality
max

([
𝜎(0)

vM

]
,
[
𝜎̃(0)

vM

]) ≤ 𝜎∗
max, (64)



PAN ET AL 17

should be verified for all x ∈ Ω, z̄ ∈ Υs
⋃

Υ̃s, where 𝜎(0)
vM is the LMvMS calculated from a point in the domain interior27. The

symbol “[ ∙ ]” here denotes the set of von Mises stresses corresponding to all points investigated.
Solution to the cell problems of periodic structures is independent of the macroscopic position a cell lies, so the elasticity

tensor of all global points can be represented by the ℂH
𝑖𝑗𝑘𝑙 of one single periodic cell. According to the expressions of stresses

presented in Eqs. (46a), (46b), the local stress in a representative cell is directly obtained by the product of solutions to a set of
determinate cell problems and homogenised displacement gradient at the macro point of interest. Thus, the calculation of local
stresses in the periodic case is something straightforward, and a follow-up discussion will focus on localisation scheme for the
case of spatially-varying microstructures.

For graded microstructures, the evaluation of stress fields 𝝈(0) and 𝝈̃(0) calls for results of the interior cell and the BL cell,
respectively, which is computationally expensive due to the dependence of cell problems to be solved on macroscopic coordinate
the cell locates in. Thereby, in order to check the strength, one has to traverse the von Mises stresses at all possible macro points
and substitute them into Eq. (64) for verification, during which cell problems in both regions will be solved repeatedly and
extensively, leading to a significant decrease in efficiency. To this end, ML comes to the rescue.

Under the scale separation framework, each cell represented by Υ or Υ̃ is assumed to be attached to a macro point, in the
vicinity of which we can accordingly define the LMvMS, i.e.,

𝜎max (x) =
⎧⎪⎨⎪⎩
max

(
𝜎(0)

vM

)
, z̄ ∈ Υs;

max
(
𝜎̃(0)

vM

)
, z̄ ∈ Υ̃s,

(65)

such that 𝜎max is only a function of the macroscopic variable, which characterises the maximum von Mises stress around point x.
Next, we aim to identify the conceptual definition given in the above equation as a function relation of factors affecting the

distribution of localised stress fields. Two factors are intuitive from Eq. (59), that is the homogenised displacement gradient
𝜕uH∕𝜕x and Jacobian components J𝑖𝑗 . Besides, the determination of cell problems requires specifying the corresponding geo-
metric domains, whose information is completely stored in cell topology description function (TDF) Φ. Finally, a definite but
implicit relationship linking 𝜎max and multiple factors is identified, i.e.,

𝜎max = 𝐹
(
𝜀H; J,Φ

)
, (66)

which is expected to be represented with the NNs.

4.2 Determination of input arguments
The NNs are expected to substitute the relation of stress-localisation (Eq. (66)) and relax the requirement to obtain analytical
solutions from the AH. To further improve the performance of NN fitting, one should first consider reducing the dimension
of input arguments as much as possible, three major criteria are adopted here to determine the proper inputs: a) Extraction of
geometric meaning; b) Compression of sample space40; c) Input rescaling27.

FIGURE 4 Geometric meaning behind the mapping between microscopic cells. 𝜆 measures the length relative to the other edge,
𝜃1 is the counterclockwise rotation angle of the cell and 𝜃2 is the angle between adjacent sides of a parallelogram.

First, extraneous variables can be eliminated with a thorough understanding of the geometric meanings of some arguments.
For instance, the inverse matrix of Jacobian matrix J−1 maps a square cell to a parallelogram, and such a process can be fully
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described by three parameters 𝜆, 𝜃1 and 𝜃2 (See Fig. 4), generally, the following limits are imposed on their ranges
1

𝜆max
≤ 𝜆 ≤ 𝜆max, 0 ≤ 𝜃1 < 2𝜋, 𝜃min ≤ 𝜃2 ≤ 𝜋 − 𝜃min, (67)

to prevent distortion of cells. At the cell level, we can drop the rotation angle 𝜃1 because the change of elasticity tensor due to
rotation is explicit. Thus only the effects of stretching and torsional deformation are considered.

Notice that there are two ways to decompose the deformation mode of a microscopic cell, i.e., deformation followed by
rotation or rotation followed by deformation. As demonstrated, only the first way enables ℂH

𝑖𝑗𝑘𝑙 in the real space to be derived
from the solution of cells ignoring the rotation angle41. Consequently, the specific decomposition is expressed as

J−1 =
[
cos 𝜃1 𝜆 cos(𝜃1 + 𝜃2)
sin 𝜃1 𝜆 sin(𝜃1 + 𝜃2)

]
=
[
cos 𝜃1 − sin 𝜃1
sin 𝜃1 cos 𝜃1

] [
1 𝜆 cos 𝜃2
0 𝜆 sin 𝜃2

]
= QR, (68)

where Q is an orthogonal matrix representing pure rotation and R is an upper triangular matrix representing pure deformation.
We ignore rigid body rotation of cell in the subsequent data set construction process, so the local Jacobian matrix will be the
special case of Q = I,where I is a identity matrix, denoted as J̃ = R−1.

For the second criterion, it is proved that 𝜎max remains unchanged when each component of J̃ is multiplied by the same
non-zero constant, therefore we require det

(
J̃
)
= 1, i.e., J̃′𝑖𝑗 =

[
det

(
J̃
)]− 1

𝑁 J̃𝑖𝑗 .
And for cases of linear elasticity, the criterion (c) allows Eq. (66) to be re-expressed as

𝜎max = 𝜀∗𝐹
(
𝜀H

𝜀∗
; 𝜆, 𝜃2,Φ

)
, (69)

here, for the interior cell, we choose 𝜀∗ =
√(

𝑢H11
)2 + (

𝑢H22
)2 + (

𝛾H12
)2, 𝛾H12 = 𝑢H12 + 𝑢H21, while for the BL cell, 𝜀∗ =√(

𝑢H11
)2 + (

𝑢H22
)2 + (

𝑢H12
)2 + (

𝑢H21
)2, 𝑢H𝑖𝑗 = 𝜕𝑢H𝑖 ∕𝜕𝑥𝑗 , for 𝑖, 𝑗 = 1, ⋯ , 𝑁 . The argument set regarding the homogenised dis-

placement gradient is thus normalised, and the complexity of the corresponding network input is reduced by one dimension in
a sense.

4.3 Construction of data sets
Low discrepancy sequence is adopted to ensure the input data points form a more complete coverage of the space they span.
Based on the theoretical derivation of the preceding AH process, we can naturally distill the core steps to generate a data point,
and the specific implementation process varies in the two regions. Such steps corresponding to the interior cell and BL cell are
specified in Table 3.

Theoretically, an infinite number of data points can be generated by repeating the above steps under various vaules of input
arguments, which is well suited for parallel computing since no correlation exists between different data points of the NN related
to the interior cells; but for the NN characterising results of the BL, once solutions of the interior cell are determined, the
corresponding generating processes are also independent of each other and can be carried out in parallel.

4.4 Specification of argument values and performance of network training
In this subsection, we will present specific parameters selected in this article for the determination of cell geometry and the
construction of NN. Take cell configurations shown in Fig. 5 as an example.

For data generation, we need to assign values randomly to the two sets of controlling variables as discussed in Sec. 4.2. For
the design variables carrying the information of the macroscopic variance, we refer to the geometrically meaningful parameters(
𝑟, 𝜆, 𝜃2

)
shown in Fig. 4 instead of the components of the original Jacobian matrix J. The variable 𝑟 is chosen to capture the

change in the TDF Φ of the initial unit cell. Here the parameters
(
𝑟, 𝜆, 𝜃2

)
are randomly evaluated within [0.1, 0.3] ×

[
1∕4, 4

]
×[

𝜋∕6, 5𝜋∕6
]
, and 300 samples are collected for them.

As for the design variables indicating the on-site homogenised quantities, the number of such variables is different between
the input arguments for the NN summarising the results of the interior cell problems and those for the NN summarising the BL
cell problems. Note that an interior cell problem can be parameterised by three components, i.e.,

(
𝑢H11, 𝑢

H
22, 𝛾

H
12

)
, whose (random)

evaluations are all constrained in the interval [−1, 1]. We here collect 300 samples for these three components. But for a BL cell
problem, four parameters

(
𝑢H11, 𝑢

H
22, 𝑢

H
12, 𝑢

H
21

)
are required, while the bounds for the evaluation stay the same as [−1, 1]. Thus, the

number of samples must be larger, and 400 samples are considered. Therefore, we generate 300 × 300 = 90, 000 sets of data
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TABLE 3 Detailed steps for generating a single data point for the NNs characterising the local maximum stresses calculated
based on the solutions for the interior and the BL regions, respectively.

In
te

rio
r

Re
gi

on
Step 1. Specifying Values of Input Arguments. For an interior cell with a given TDF, specific values are
assigned to 𝜆 and 𝜃2 within the range specified in Eq. (67) to form the cell geometry Υs, meanwhile a set of
𝑢H11, 𝑢

H
22, 𝛾

H
12 is assigned within a certain range;

Step 2. Solving Cell Problems. A solvable cell problem (that with periodic BCs) has been uniquely iden-
tified in the previous step, whose solution yields 𝜉𝑗𝑘𝑖 . Results at boundary 𝜕Υm are extracted separately for
subsequent matching conditions;
Step 3. Computing the Local Stress Tensor in an interior cell. With the calculated 𝑢H𝑖𝑗 and 𝜉𝑗𝑘𝑖 , the stress
tensor 𝜎(0)

𝑖𝑗 at each point in cell domain are available;
Step 4. Computing the Output Value of NN. By solving eigenvalues for each set of 𝜎(0)

𝑖𝑗 , von Mises stress
𝜎vM
𝑖 is then obtained, 𝑖 denotes the 𝑖𝑡ℎ point selected in cell. When 𝑖 traversing all points, 𝜎max = max

(
𝜎vM
𝑖

)
gives the output of the NN. Thus a data point

(
𝑢H11, 𝑢

H
22, 𝛾

H
12, 𝜆, 𝜃2,Φ; 𝜎max

)
in the input-output space of the

NN summarising results of the interior problem is presented.

B
ou

nd
ar

y
La

ye
r Step 1. Specifying Values of Input Arguments. Specific values are assigned to 𝜆 and 𝜃2 likewise, forming

the geometry of a BL cell Υ̃s, also a set of homogenised displacmeent gradient 𝑢H11, 𝑢
H
22, 𝑢

H
12, 𝑢

H
21 is assigned

within a certain range;
Step 2. Solving Cell Problems. Two types of cell problems (57) and (58) can be solved in domain defined in
the previous step to get 𝜉𝑗𝛼𝑖 , 𝜂̃𝑗𝑘𝑖 . The values 𝜉𝑗𝑘𝑖

|||𝜕Υm
extracted before are needed for the determination of 𝜂̃𝑗𝑘𝑖 ;

Step 3. Computing the Local Stress Tensor in a BL cell. Stress 𝜎̃(0)
𝑖𝑗 is available from Eq. (59) based on the

results obtained above;
Step 4. Computing the Output Value of NN. Similar to the operation of the interior region, network output
in this case goes like 𝜎max = max

(
𝜎̃vM
𝑖

)
. Thus a data point

(
𝑢H11, 𝑢

H
22, 𝑢

H
12, 𝑢

H
21, 𝜆, 𝜃2,Φ; 𝜎max

)
in data set of

the NN summarising results of the BL problem is presented.

points to train a NN to represent the results of the interior problem, and 300 × 400 = 120, 000 sets of data points to train a NN
that characterises the results related to the BL problem.

(a) (b)

FIGURE 5 Specific configurations of the representative cells. (a) Geometric patterns of an interior cell (left), a BL cell taken
from the boundary section on the left side of the domain (middle) and one taken from the upper side of the domain (right). The
above three types of cells constitue the interior region, displacement BL region and stress BL region of an MSC, respectively,
whose BL cells bearing a geometry different from the interior cells. The thickness of the left layer on the middle cell is 0.02
times the original length (usually taken as 1). (b) Another type of unit cell, which alone constitues an MSC.

The training of both types of network models is implemented based on the Statistics and Machine Learning Toolbox 12.4
in MATLAB® R2022b. Levenberg-Marquardt algorithm is adopted here for the NN training models, in which the activation
function is Sigmoid function and the initialisation method is Nguyen-Widrow method. We follow the general practice of arbi-
trarily selecting 70%, 15%, 15% of the data set as the training set, test set and validation set for the NN respectively. For the NN
constructed based on the interior solutions, three hidden layers are adopted, with 45 neurons in the first layer and 40 neurons
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in the last two layers, i.e., the structure of this network is (45, 40, 40); as for the NN constructed based on the BL solutions, the
network structure of (55, 55, 50) is selected corresponding to the BL cell subject to displacement BCs at its outer boundary and
(50, 50, 45) for that subject to stress BCs.

It is obvious to tell from the zero-order stress expressions of periodic structures that data points of both networks take the form(
𝑢H11, 𝑢

H
22, 𝛾

H
12; 𝑟

)
. As explained in Sec. 4.1, the corresponding cell problems only need to be solved once, but we still consider

employing the NN to replace such a solving-and-storing process for the sake of tremendously reducing the memory and disk
footprint. In this case, 𝑁1 = 250, 𝑁2 = 300 are adopted for both data sets, and structures of the two NNs mentioned above are
(30, 30, 25) and (45, 45, 35), respectively.

The performance of the trained network is measured by the root-mean-square error (RMSE). The lower the RMSE, the better
the network should perform. On a graphic account, more data points get concentrated around line where the trained output equals
the corresponding feeding data, such as those shown in Fig. 6, and good performance from the trained neural networks is thus
demonstrated.
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FIGURE 6 Regression graphs of the trained NNs. (a), (b), (c) are all the cases of periodic structures, corresponding to the
interior cell, BL cell on a fixed edge and that on a traction-free edge, respectively; (d), (e), (f) are all under the case of SVMSCs
which also correspond to the same meaning as the above three, respectively. RMSEs of the networks training for each case are
marked below the corresponding subfigure.

5 NUMERICAL EXAMPLES

Based on the previous theoretical groundwork, several numerical computations including cases of periodic and gradually-
varying microstructures, BL cells subject to displacement and stress BCs, rectangular and non-rectangular domains, are
implemented on the COMSOL Multiphysics® v. 5.6. platform42 to illustrate the impact of BL effects in different problems
investigated.

For all MSCs involved hereafter, solid part materials are assumed to be elastic, isotropic and the specific values are selected
as follows: the Young’s modulus is fixed to 𝐸 = 200GPa and Poisson’s ratio 𝜈 = 0.3. A plane strain state is considered here to
serve as the two-dimensional simplified model of the problem, and the lengths of all specimens in the third dimension is assumed
to be 1m. For simplicity, the nondimensional BL thickness (Eq. (9)) is fixed at about 1 (see Ref.34 for systematic investigation
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of the case with square unit cells, and the case of non-square cells will be given in Sec. 5.1), and we will not include the surface
term (Eq. (44)) in the minimisation of energy functional.

5.1 Remarks on theoretical studies
The former rigorous treatment of the BL enables the exponential decay of quantities associated with the BL region in the direction
perpendicular to the structure boundary28,29,30,31, which is quite inconvenient for practical implementation. Therefore, recent
work has favoured an approximate way to extract the BL region separately for brute force computation33,32, and this requires a
pre-determination of the extent of the BL influence. Drago and Pindera have numerically demonstrated that for a periodic porous
structure with square unit cell, the BL effect is confined to one layer of the constituent cell34, meaning that one period thickness
suffices for the approximation of the BL behaviour.

Here, a case of a periodic porous structure with non-square constituent cell is presented to further illustrate the extent of such
BL effect. We consider a periodic structure consisting of 6×5 parallelogram unit cells with a fixed left end, a given displacement
𝑢 = 0.05 dm imposed on the right end, and the remaining two boundaries free. The cell takes a geometry similar to the left
panel of Fig. 4, with 𝜃1 = 0, 𝜃2 = 𝑝𝑖∕3, but it is normalised to its area. In this section, the stress components recovered through
traditional AH method are used to examine the accuracy of stress calculations near the boundary by comparing them with those
obtained by fine-mesh FEA. From the results shown in Fig. 7, it can be seen that when 𝜖 is not very large, the difference in each
stress component is confined to a one-period thick layer near the boundary.

5.2 The case of periodic porous structures
For configurations infilled with periodic microstructure, the geometry of BL cells can differ from that of the interior cells, and
in fact any cell that smoothly connects to the interior part can be used to construct the BL region. In the discussion within this
subsection, two situations will be examined: a) the cases with geometrically identical cells where the BL cells are identical to
the interior cells in shape; b)the cases with geometrically different cells where the BL cells are different from the interior cells
in shape.

5.2.1 Cases with geometrically identical cells
We first consider a spatially periodic structure of size 7 dm×4 dm formed by a hollow unit cell as shown in Fig. 8. This MSC is
fixed to its left side, while a uniformly distributed displacement field is applied on its right side at a magnitude of 𝑢1 = 0.05 dm.

Since the surface energy term due to the BL is neglected, the macroscopic homogenisation problem is identical to that in
the AH method, particularly for periodic structures, the equivalent elasticity tensor has only to be calculated once to obtain the
moduli of the whole entity. In the AH theory, solution to such a porous structure can be approximated by the combination of
solutions to microscopic cell problems and macroscopic homogenisation problem, and the homogenised displacement gradients
are obtained by following this traditional operation, thus determining network inputs related to the loading environment.

Now we set about investigating the reliability of two types of NNs constructed based on solutions for the interior region and
the BL region, respectively, in predicting the LMvMSes near the configuration boundary, with those extracted from direct fine-
mesh FEA of the MSC being served as the benchmark. The specific regions for extracting fine-scale computation results are
indicated in Fig. 8. Note that the “corner cells”, which are also located at the structure boundary, are not included in regions
above, because they are no more periodic along any direction and have to be modelled separately for further analysis. Thus no
discussion concerning “corner cells” is included for the time being.

The computation results from the present BL-homogenisation-based scheme are compared with those from fine-scale solu-
tions, as well as those from the traditional homogenisation method (without the inclusion of BL cells). On the field boundary
that lies on the left edge of the MSC, the relative deviation from the fine-scale results is found both limited, i.e., ≤ 5% (Fig. 9(a)),
with and without the inclusion of BL cells. But on the free edge lying on the top of the structure, as shown in Fig. 9(b), the use
of BL formulations effectively decreases the relative error from about 19% to below 6.1%.

Note that the results presented in Fig. 9 are all limited to the case the thickness of the BL (Eq. (9)) being the same as that
of the interior cell, which is an approximate treatment. However, there is a possibility that the BL effects span multiple cell
layers. We follow the previous steps to investigate the influence on final results when the BL thickness is changed to two cells.
From the comparison of predictive results shown in Fig. 10, the impact on the prediction accuracy caused by increasing the
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(a) Comparison of stress component 𝜎11

(b) Comparison of stress component 𝜎22

(c) Comparison of stress component 𝜎12

FIGURE 7 Illustration of the extent of the BL effect in a periodic porous structure composed of parallelogram unit cells. The left
column represents the stress components recovered through the AH method, denoted 𝜎AH; the three figures in the middle column
represent the stress components directly given by fine-mesh FEA, denoted 𝜎FM; the right column figures show the difference
between the first two, that is, 𝜎AH − 𝜎FM.

number of cells contained in one BL cell does not have a significant improvement over the original one, which coincides with
the conclusion drawn in Sec. 5.1.

5.2.2 Cases with geometrically different cells
For the second situation, we consider a configuration of size 7.02 dm×4 dm where the microstructure near the boundary differs
from that in the interior. As shown in Fig. 11, the specific configurations of constituting cells can be seen more clearly in the
upper left panel. Here BCs of the structure are consistent with those described in the previous section and the thicknesses of
both thin layers attached to the left and right ends are 0.01 dm.

Similar to Sec. 5.2.1, the comparison between predictions and the benchmark has also been presented in this situation in
Fig. 12. From which it is obvious that the predicted values given by the NN characterising the interior local maximum stress
show a great deviation from fine-scale results, and the relative errors even exceed 32% when predicting the LMvMSes near the
free edge of the MSC (Fig. 12(b)), while the NN characterising the local maximum stress in the BL still maintains high accuracy.



PAN ET AL 23

FIGURE 8 Periodic structure consists of identical unit cells taking the geometry of Fig. 5(b). The left boundary is fixed and a
uniform displacement 𝑢1 = 0.05 dm is imposed on the right end. Blue shaded areas denote regions composed of BL cells subject
to (a) displacement BCs u = 𝟎 (b) stress BCs 𝝈 ⋅ n = 𝟎, respectively, on their outer boundaries.
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FIGURE 9 Case: Periodic microstructure with unit cells taking the geometry of Fig. 5(b). Comparison between values predicted
by the NNs with the benchmark obtained from direct fine-mesh FEA of the MSC. Two subfigures represent the examination of
the LMvMSes in the blue shaded area (a) and (b) illustrated in Fig. 8, respectively. Here solid lines denote quantities related to
the relative errors and dashed lines denote those related to the absolute values. Explanations of abbreviations in the legend are
listed. W/O: Without, BL: Boundary Layer, RE: Relative Error, FS: Fine-Scale.

5.3 Cases with spatially-varying structures
Unlike each macroscopic point corresponds to the identical representative cell in periodic structures, the constituent cells of an
SVMSC may undergo deformation and rotation, such local behaviour are fully reflected by the Jacobian matrix (Eq. (53)) of the
mapping function. As stated in Sec. 4.2, rotation angle 𝜃1 is neglected in the process of generating data set for the consideration
of reducing the input dimension, so all values here predicted by the NNs are on the premise of 𝜃1 = 0.

Consequently, in practical gradually-varying microstructures, the input and output of the NNs should be adjusted in conjunc-
tion with the cell deformation mode, the specific approach is to apply QR factorisation (Eq. (68)) to the Jacobian matrix J at
a macroscopic point to get two matrices corresponding to pure deformation (R) and rotation (Q), respectively. The former is
intended for solving the network input arguments related to cell configuration, and the latter one provides rotation angle of a
cell at a certain position, whose role is twofold: first, “recovering” outputs of the NN to actual values in the practical structure
(for instance, predictions of the equivalent elasticity tensor can be used to solve the homogenisation problem only if they are
transformed to those at specific rotation angles); second, “returning” the real structure solutions to the original values that in the
cases absence of rigid body rotation (for instance, homogenised strains obtained from real macro problems can be fed into the
NNs only if they have been transformed to the cell local coordinate system). The transformation of quantities involved above is
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FIGURE 10 Comparison of the predictive accuracy between the NN constructed based on BL cells composed of one single
unit cell and that constructed based on BL cells composed of two cells. Two subfigures correspond to results extracted from two
regions (a) and (b) in Fig. 8, respectively. Here solid lines denote quantities related to the relative errors and dashed lines denote
those related to the absolute values. “One Cell” indicates the case where the BL cell consists of one single cell. “Two Cells”
represents the case where the BL cell consists of two unit cells.

FIGURE 11 Periodic structure consists of different unit cells taking the geometry of Fig. 5(a). Blue shaded areas here have the
same meanings as in Fig. 8, and the thicknesses of both thin layers attached to the left and right ends are fixed to 0.01 dm.
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FIGURE 12 Case: Periodic microstructure with unit cells taking the geometry of Fig. 5(a). Two subfigures here represent the
examination of the LMvMSes in the blue shaded area (a) and (b) illustrated Fig. 11, respectively.
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expressed as:

ℂH
𝑖𝑗𝑘𝑙 = Q𝑖𝑝 Q𝑗𝑞 Q𝑘𝑠 Q𝑙𝑡 ℂ̂H

𝑝𝑞𝑠𝑡; (70a)

𝜀H𝑖𝑗 = Q𝑝𝑖 Q𝑞𝑗 𝜀̂
H
𝑝𝑞 , (70b)

where symbol “∧” in these two relations indicates quantities given directly by the NN and Q𝑖𝑗 are components of the orthogonal
matrix Q.

An SVMSC here contains the gradually varying behaviour of infilled microstructures in a regular or even theoretically an
arbitrary domain. If directly carrying out homogenisation in the actual configuration domain for an SVMSC with irregular
boundaries will bring about great inconvenience, which is because it takes some time to establish an irregular model either by
interpolating a large number of points to fit the boundary curves or reversing the control points to reconstruct the boundary
represented by B-spline. Moreover, coordinates of points in space [0, 1]𝑁 are required in order to get the mapping Jacobian
matrices at them. Hence in light of the aforementioned difficulties, we consider transferring homogenisation computation process
for equivalent entities with various geometries to the unit space [0, 1]𝑁 . For detailed information about degrees of the B-spline
basis functions and coordinates of control points adopted in numerical examples, one can refer to Appendix B.

5.3.1 Rectangular domain infilled with graded microstructure
In this subsection, an SVMSC in a regular rectangular domain of size 7 dm × 4 dm is examined as shown in the right panel of
Fig. 13, its left boundary is fixed and a uniformly distributed traction of magnitude 𝑝1 = 100000N is imposed on its right end
along positive direction of axis 𝑥𝜖1. The control points correspond to this configuration are given by Eq. (B9).

FIGURE 13 Spatially-varying microstructure filled in a rectangle. BCs should be modified when considering geometry mapping
operation, for instance, the external force 𝑝1 on the right edge becomes 𝑝∗1 =

√(
J−112

)2 + (
J−122

)2, J−112 and J−122 here represent the
(1,2) and (2,2) component of the inverse matrix of J.

For a two-dimensional homogenisation problem, governing equation with Jacobian operators introduced by the mapping from
original equivalent entity to a unit square should be established, and the corresponding BCs should be modified. The actual
elasticity tensor at each macroscopic point is obtained by substituting the output of the NN into Eq. (70a), thus the original
homogenisation problem can be solved equivalently in a unit square domain (See Fig. 14).

Note that derivative terms of the displacements obtained here are not equal to the actual homogenised displacement gradients
and need to combine the Jacobian components at a particular point to recover to the actual values. But it does not end there, such
values are based on the global coordinate system, in which every unit cell has a rotation angle of its own, so the actual strain
field has to be transformed to the cell local coordinate system to further serve as the input of the NN. Such a transformation
relation is represented by Eq. (70b).

In this example, the predictive performance of the NNs are also well investigated. From Fig. 15, both the two NNs are
found to present good results for the LMvMSes near the fixed structure boundary, with relative errors basically below 10% (see
Fig. 15(a)), while in the case of free boundary, Fig. 15(b) shows that the NN characterising the LMvMS in the BL demonstrates
greater reliability in the LMvMS prediction.
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(a) 𝑢H1 (b) 𝑢H2

FIGURE 14 Case: Graded microstructure in a regular rectangular domain. Macroscopic homogenisation problem computed
in the unit domain [0, 1]2. (a) Contour plot of homogenised displacement component along the positive direction of coordinate
axis 𝑦𝜖1; (b) contour plot of homogenised displacement component along the positive direction of 𝑦𝜖2.
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FIGURE 15 Case: Graded microstructure in a regular rectangular domain. Comparison between values predicted by the two
NNs and the benchmark obtained from direct fine-mesh FEA of the MSC.

5.3.2 Non-rectangular domain infilled with graded microstructure
Our discussion is extended to structure where the domain boundaries become curved, as shown in Fig. 16. Note that the MSC in
Fig. 16 is generated by transforming a periodic structure with B-spline mapping functions, and the corresponding coordinates
of control points in this case given by Eq. (B10). One advantage of adopting B-spline for such mapping operation is that the
boundary cells stay complete no matter how the cells get distorted locally. As discussed above, even if the domain boundaries
are curved (irregular), the procedure of homogenisation computation can also be implemented in the region [0, 1]2 as outlined
in Sec. 5.3.1.

Fig. 17 shows the distribution contour plots of the two components of the homogenised displacement field after mapping to
the unit square domain. The comparison of network performance can be seen clearly from Fig. 18, from which one can draw
a conclusion that the NNs constructed based on solutions for the BL problem presents predicted values much closer to the
benchmark given by fine-scale results, with small relative deviations under different circumstances.
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FIGURE 16 Spatially-varying microstructure filled in a region bearing irregular shape.

(a) 𝑢H1 (b) 𝑢H2

FIGURE 17 Case: Graded microstructure in a non-rectangular domain. Macroscopic homogenisation problem computed in the
unit domain [0, 1]2. (a) Contour plot of homogenised displacement component along the positive direction of coordinate axis
𝑦𝜖1; (b) contour plot of homogenised displacement component along the positive direction of 𝑦𝜖2.
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FIGURE 18 Case: Graded microstructure in a non-rectangular domain. Comparison between values predicted by the two NNs
and the benchmark obtained from direct fine-mesh FEA of the MSC.
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6 CONCLUSIONS AND DISCUSSION

In the present article, we propose a framework for analysing the boundary layer behaviour of multiscale configurations. Com-
bined with the use of machine learning, the scheme is found to accurately and efficiently capture several key local mechanical
quantities, such as boundary-localised strength, in the vicinity of the overall boundary. To be more specific, the novelty here is
demonstrated in two aspects.

Firstly, in a theoretical aspect (Sec. 2 and 3), a new model of the BL region in the AH method is established by abandoning
the original local-periodicity assumption. which presents two types of cell problems corresponding to the BL (Eqs. (21), (22)).
We further show the surface balance equation (Eq. (31)), from the perspective of AH, that the homogenised displacement should
satisfy on the equivalent solid surface, where the forms of the elasticity constants (Eq. (30)) are given by solutions for the BL
cell and no longer preserve the symmetry of general fourth-order elasticity tensor. Moreover, an later investigation on the energy
of the BL region gives the surface energy (Eq. (44)) of an MSC, which, as seen in Eq. (45), is a small quantity compared to the
bulk counterpart if there is a significant contrast between the BL thickness and the structure length.

Secondly, in a computational aspect (Sec. 4 and 5), it realises reliable and efficient predictions of the LMvMSes near the
boundary of complex porous structures and provides the safety assessment for such configurations at the boundary. With a
combinative use of the AH and ML, the original implicit relationship between the local quantity of interest and its related
arguments can then be simplified to a function relation (Eq. (66)) that numbers in, numbers out.

Although the current framework has exhibited certain reliabilities, more accurate predictions are still in needs in some
scenarios. Topics for further studies can be summarised as follows.

Firstly, the representative cells involved here are all of finite size. The solution given by the AH theory converges to the actual
one only when the small parameter 𝜖 defined by Eq. (2) is infinitesimal, thus for cells in practical porous structures, 𝜖 will never
reach zero and the error caused by this will also never be eliminated, only reduced. The resulting truncation error is roughly of
the same order-of-magnitude as 𝜖.

Secondly, the contribution of surface energy is omitted in actual computation. Such a treatment is accurate as 𝛿 = 𝑑∕𝐿 → 0
and may introduce a large error if 𝛿 is not small enough, however, for elliptic Dirichlet problems, the effect of BL decays expo-
nentially as the distance from the boundary increases31, therefore resulting in a tolerated error, which is roughly of magnitude (𝛿). For further improvement of accuracy, the surface energy term should be taken into account in the system energy functional
to be minimised and the surface balance equations also need to be used instead of the real loading conditions of the homogenised
solid.

Thirdly, the introduction of the B-spline does greatly endow the freedom to modify the configuration geometry, but it also
brings with it the possibility of excessive local deformation, resulting in a larger gradient of the entries of the Jacobian matrices
J in this region compared to its surroundings. Therefore under this circumstance, the strain gradient model (higher-order theory)
has to be adopted17, that is, the material deformation or mechanical response at a point is associated with a higher-order strain
gradient. So as to capture the local response, such as local stress field, more accurately, the effects of the additional terms brought
by the higher-order expansion of displacement field should be carefully considered.

Finally, BL effects where inelastic effects possibly induced from singular behaviours, such as, crack initiation, etc., are present,
should also be examined in depth in future.
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APPENDIX

A PROOF OF TRANSFORMATION BETWEEN DIFFERENT BOUNDARY ORIENTATIONS

We now prove that Eqs. (62a) and (62b) are correct. Relations of the solutions for the periodic cell under different scaling
factors and rotation angles have been given in the case of conformal mapping41, along this lines, the rotation of the BL cell is
investigated. First of all, the components of the elasticity tensor remain the same in any reference coordinate for a configuration
with isotropic base material, that is,

ℂ𝑖𝑗𝑘𝑙 = Q𝑖𝑎 Q𝑗𝑏 Q𝑘𝑐 Q𝑙𝑑 ℂ𝑎𝑏𝑐𝑑 ; (A1a)
ℂ𝑖𝑗𝑘𝛼 = Q𝑖𝑎 Q𝑗𝑏 Q𝑘𝑐 Q𝛼𝑑 ℂ𝑎𝑏𝑐𝑑 , (A1b)

where Q stands for an orthogonal matrix. To demonstrate the transformation of cell solutions under different rotation angles,
“characteristic equations” of the two types of BL cell problems must be specified, which here indicate equations independently
contain the meaning of each free index of the generalised displacement. For example, the free indices 𝑠𝑡 of variable 𝜂̃𝑠𝑡𝑘 in the
governing equation of Eq. (22) do not carry any physical meaning (like prestrain) if the equation is separately examined. And
the proper “characteristic equations” of BL cell problems can be derived from the discussion on generalisation in Sec. 3.2

J𝑚𝑗
𝜕

𝜕𝑧̄𝑚

(
ℂ𝑖𝑗𝑘𝛼𝛿𝑘𝑠𝛿𝛼𝛽 + ℂ𝑖𝑗𝑘𝑙J𝑟𝑙

𝜕𝜉𝑠𝛽𝑘
𝜕𝑧̄𝑟

)
= 0; (A2a)

ℂ𝑖𝑗𝑘𝑙J𝑟𝑙
𝜕𝜂̃𝑠𝑡𝑘
𝜕𝑧̄𝑟

𝑚𝑗

|||||𝜕Υ̃𝑐

=

(
ℂ𝑖𝑗𝑠𝑡 + ℂ𝑖𝑗𝑘𝑙J𝑟𝑙

𝜕𝜉𝑠𝑡𝑘
𝜕𝑧̄𝑟

)
𝑚𝑗

||||||𝜕Υ𝑐

, (A2b)

𝛼, 𝛽 = 1, ⋯ , 𝑁 − 1, while J, which originally reflects stretching, rotating and twisting of a cell, only represents the rigid body
rotation here, corresponding to R = I in Eq. (68). Thus the relationship between the Jacobian matrix and the orthogonal matrix is

J𝑖𝑗 = Q𝑗𝑖. (A3)

Substituting Eqs. (A1), (A3) into Eq. (A2a) gives

Q𝑗𝑚
𝜕

𝜕𝑧̄𝑚

(
Q𝑖𝑎 Q𝑗𝑏 Q𝑠𝑒 Q𝛽𝑓 ℂ𝑎𝑏𝑒𝑓 + Q𝑖𝑎 Q𝑗𝑏 Q𝑘𝑐 Q𝑙𝑑 ℂ𝑎𝑏𝑐𝑑 Q𝑙𝑟

𝜕𝜉𝑠𝛽𝑘
𝜕𝑧̄𝑟

)
= 0, (A4)

based on a relation: Q𝑗𝑖 Q𝑗𝑘 = 𝛿𝑖𝑘, 𝑖, 𝑗, 𝑘 = 1, ⋯ , 𝑁 for the orthogonal matrix Q, we multiply both ends of Eq. (A4) by Q𝑖𝑝 to get

𝜕
𝜕𝑧̄𝑚

(
Q𝑠𝑒 Q𝛽𝑓 ℂ𝑝𝑚𝑒𝑓 + Q𝑘𝑐 ℂ𝑝𝑚𝑐𝑟

𝜕𝜉𝑠𝛽𝑘
𝜕𝑧̄𝑟

)
= 0, (A5)

further consider the substitution of indices in the above equation, and the new equation is obtained by replacing the original
indices 𝑝, 𝑚, 𝑐, 𝑟, 𝑘 with 𝑖, 𝑗, 𝑘, 𝑙, 𝑚, i.e.,

𝜕
𝜕𝑧̄𝑗

⎛⎜⎜⎜⎝Q𝑠𝑒 Q𝛽𝑓 ℂ𝑖𝑗𝑒𝑓 + ℂ𝑖𝑗𝑘𝑙

𝜕
(
Q𝑚𝑘 𝜉

𝑠𝛽
𝑚

)
𝜕𝑧̄𝑙

⎞⎟⎟⎟⎠ = 0, (A6)

For the reference BL cell, its rotation matrix is an identity matrix, so the corresponding governing equation is reduced to the
form of that in periodic case. If we denote the incomplete index of the reference BL cell takes the value 𝛼, the one after rotation
takes the value 𝛽, then we have the relation: when 𝛼 = 𝛽, Q𝑖𝑗 = 0, for 𝑖 ≠ 𝑗; when 𝛼 ≠ 𝛽, Q𝑖𝑗 = 0, for 𝑖 = 𝑗. A comparison
between Eqs. (A6) and (21a) gives the following equation

Q𝑚𝑘 𝜉
𝑠𝛽
𝑚 = Q𝑠𝑡 Q𝛽𝛼

̂̃𝜉𝑡𝛼𝑘 , for 𝛼, 𝛽 = 1, ⋯ , 𝑁 − 1, (A7)

where “∧” indicates solutions correspond to the reference BL cell and are already known. Again, multiplying Q𝑛𝑘 at both ends
of the equation and then replacing the indices 𝑛, 𝑠, 𝑚, 𝑡, 𝛽, 𝛼 with 𝑖, 𝑗, 𝑘, 𝑠, 𝛼, 𝛽, Eq. (62a) is finally proven.

With the above process, the proof of transformation for another BL cell problem is straightforward, but two points should be
stated: first, the proof here is carried out based on the “characteristic equation” (Eq. (A2b)) instead of the governing equation,
second, transformation relation of the interior cell rotation should be identified 𝜉𝑗𝑘𝑖 = Q𝑖𝑟 Q𝑗𝑠 Q𝑘𝑡 𝜉𝑠𝑡𝑟 . The detailed proof of
Eq. (62b) is thus omitted here.
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B DETAILS ON SPECIFIC SETTINGS ASSOCIATED WITH B-SPLINE

The specific parameters related to B-spline mapping are listed below. A two-dimensional pattern formed by Eq. (52) can be
generally viewed as a net woven by two families of B-splines corresponding to two orthogonal directions, respectively. The
number of control points along these two directions is: 𝑛 = 8, 𝑚 = 6 and the maximum degrees of B-spline basis functions are
selected as 𝑝 = 𝑞 = 2.

In this article, “clamped” type B-spline is selected as the mapping representation, in which the corresponding knot vectors
are in such a form: nodes at both ends have a repeat degree of 𝐷 + 1, 𝐷 represents the maximum degree of the B-spline basis
function, the rest of the nodes are uniformly distributed with a repeat degree of 1, i.e.,

𝑈 =

⎡⎢⎢⎢⎣0, ⋯ , 0
⏟⏟⏟

𝑝+1

, 𝑦1𝑝+1, ⋯ , 𝑦1𝑛−1, 1, ⋯ , 1
⏟⏟⏟

𝑝+1

⎤⎥⎥⎥⎦ , 𝑉 =

⎡⎢⎢⎢⎣0, ⋯ , 0
⏟⏟⏟

𝑞+1

, 𝑦2𝑞+1, ⋯ , 𝑦2𝑚−1, 1, ⋯ , 1
⏟⏟⏟

𝑞+1

⎤⎥⎥⎥⎦ . (B8)

For example, if the number of control points 𝑁 = 6 and the maximum degree 𝐷 = 2, then the knot vector 𝑈 =[
0, 0, 0, 1

4
, 1
2
, 3
4
, 1, 1, 1

]
.

The coordinates of control points corresponding to the B-spline adopted in rectangular multiscale structure in Sec. 5.3.1 take
the form

P =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[0, 0] [0.5, 0] [1.5, 0] [2.6, 0] [3.8, 0] [5, 0] [6.5, 0] [7, 0]

[0, 0.5] [0.5, 0.5] [1.5, 0.7] [2.6, 0.6] [3.8, 0.5] [5, 0.4] [6.5, 0.5] [7, 0.5]

[0, 1.6] [0.5, 1.6] [1.5, 1.7] [2.6, 1.6] [3.8, 1.6] [5, 1.6] [6.5, 1.5] [7, 1.6]

[0, 2.6] [0.5, 2.6] [1.5, 2.7] [2.6, 2.5] [3.8, 2.6] [5, 2.5] [6.5, 2.4] [7, 2.6]

[0, 3.5] [0.5, 3.5] [1.5, 3.4] [2.6, 3.2] [3.8, 3.5] [5, 3.4] [6.5, 3.4] [7, 3.5]

[0, 4] [0.5, 4] [1.5, 4] [2.6, 4] [3.8, 4] [5, 4] [6.5, 4] [7, 4]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(B9)

The coordinates of control points corresponding to the B-spline adopted in non-rectangular multiscale structure in Sec. 5.3.2
take the form

P =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[0, 0] [0.5, 0.05] [1.6, 0.1] [2.8, 0.05] [4, 0] [5.2,−0.05] [6.48,−0.1] [6.98, 0]

[0, 0.5] [0.5, 0.55] [1.6, 0.8] [2.8, 0.7] [4, 0.7] [5.2, 0.5] [6.46, 0.7] [6.96, 0.55]

[0, 1.6] [0.5, 1.65] [1.6, 1.7] [2.8, 1.6] [4, 1.6] [5.2, 1.6] [6.42, 1.5] [6.92, 1.6]

[0, 2.6] [0.5, 2.65] [1.6, 2.7] [2.8, 2.5] [4, 2.6] [5.2, 2.5] [6.38, 2.4] [6.88, 2.5]

[0, 3.5] [0.5, 3.55] [1.6, 3.6] [2.8, 3.55] [4, 3.49] [5.2, 3.45] [6.34, 3.4] [6.84, 3.5]

[0, 4] [0.5, 4.05] [1.6, 4.1] [2.8, 4.05] [4, 4] [5.2, 3.95] [6.3, 3.9] [6.8, 3.95]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(B10)

References

1. Liu X, Furrer D, Kosters J, Holmes J. Vision 2040: a roadmap for integrated, multiscale modeling and simulation of materials
and systems. tech. rep., 2018.

2. Liu C, Du Z, Sun Z, Gao H, Guo X. Frequency-preserved acoustic diode model with high forward-power-transmission rate.
Physical Review Applied 2015; 3(6): 064014.

3. Fratzl P, Barth FG. Biomaterial systems for mechanosensing and actuation. Nature 2009; 462(7272): 442–448.



PAN ET AL 31

4. Aage N, Andreassen E, Lazarov BS, Sigmund O. Giga-voxel computational morphogenesis for structural design. Nature
2017; 550(7674): 84–86.

5. Liu C, Du Z, Zhang W, Zhu Y, Guo X. Additive manufacturing-oriented design of graded lattice structures through explicit
topology optimization. Journal of Applied Mechanics 2017; 84(8).

6. Suquet PM. Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia E, Zaoui A. , eds. Homoge-
nization Techniques for Composite MediaSpringer Berlin Heidelberg; 1987; Berlin, Heidelberg: 193–198.

7. Suquet P. Effective Properties of Nonlinear Composites: 197–264; Vienna: Springer Vienna . 1997.

8. Smit RJ, Brekelmans WM, Meijer HE. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-
level finite element modeling. Computer Methods in Applied Mechanics and Engineering 1998; 155(1-2): 181–192.

9. Feyel F. Multiscale FE2 elastoviscoplastic analysis of composite structures. Computational Materials Science 1999; 16(1-4):
344–354.

10. Terada K, Kikuchi N. A class of general algorithms for multi-scale analyses of heterogeneous media. Computer Methods
in Applied Mechanics and Engineering 2001; 190(40-41): 5427–5464.

11. Bensoussan A, Lions JL, Papanicolau G. Asymptotic analysis for periodic structures. Elsevier . 1978.

12. Sánchez-Palencia E. Non-homogeneous media and vibration theory. Lecture Note in Physics, Springer-Verlag 1980; 320:
57–65.

13. Fish J, Shek K, Pandheeradi M, Shephard MS. Computational plasticity for composite structures based on mathematical
homogenization: Theory and practice. Computer Methods in Applied Mechanics and Engineering 1997; 148(1-2): 53–73.

14. Yuan Z, Fish J. Multiple scale eigendeformation-based reduced order homogenization. Computer Methods in Applied
Mechanics and Engineering 2009; 198(21-26): 2016–2038.

15. Fish J, Yu Q, Shek K. Computational damage mechanics for composite materials based on mathematical homogenization.
International Journal for Numerical Methods in Engineering 1999; 45(11): 1657–1679.

16. Markenscoff X, Dascalu C. Asymptotic homogenization analysis for damage amplification due to singular interaction of
micro-cracks. Journal of the Mechanics and Physics of Solids 2012; 60(8): 1478–1485.

17. Rao Y, Xiang M, Cui J. A strain gradient brittle fracture model based on two-scale asymptotic analysis. Journal of the
Mechanics and Physics of Solids 2022; 159: 104752.

18. Zhu Y, Li S, Du Z, Liu C, Guo X, Zhang W. A novel asymptotic-analysis-based homogenisation approach towards fast
design of infill graded microstructures. Journal of the Mechanics and Physics of Solids 2019; 124: 612–633.

19. Dvorak GJ. Transformation field analysis of inelastic composite materials. Proceedings of the Royal Society of London.
Series A: Mathematical and Physical Sciences 1992; 437(1900): 311–327.

20. Dvorak G, Wafa A, Bahei-El-Din Y. Implementation of the transformation field analysis for inelastic composite materials.
Computational Mechanics 1994; 14(3): 201–228.

21. Michel JC, Suquet P. Nonuniform transformation field analysis. International Journal of Solids and Structures 2003; 40(25):
6937–6955.

22. Michel JC, Suquet P. Computational analysis of nonlinear composite structures using the nonuniform transformation field
analysis. Computer Methods in Applied Mechanics and Engineering 2004; 193(48-51): 5477–5502.

23. Feyel F, Chaboche JL. Multi-scale non-linear FE2 analysis of composite structures: damage and fiber size effects. Revue
Européenne des Éléments Finis 2001; 10(2-4): 449–472.

24. Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex
microstructure. Computer Methods in Applied Mechanics and Engineering 1998; 157(1-2): 69–94.



32 PAN ET AL

25. Geers MG, Kouznetsova VG, Brekelmans W. Multi-scale computational homogenization: Trends and challenges. Journal
of Computational and Applied Mathematics 2010; 234(7): 2175–2182.

26. Lefik M, Schrefler B. FE modelling of a boundary layer corrector for composites using the homogenization theory.
Engineering Computations 1996; 13(6): 31–42.

27. Zhou Z, Zhu Y, Guo X. Machine learning based asymptotic homogenisation and localisation: predictions of key local
behaviours of multiscale configurations bearing microstructural varieties. International Journal for Numerical Methods in
Engineering 2022.

28. Sanchez-Palencia E. Boundary layers in thermal conduction and elasticity. In: Sanchez-Palencia E, Zaoui A. , eds.
Homogenization Techniques for Composite MediaSpringer Berlin Heidelberg; 1987; Berlin, Heidelberg: 137–147.

29. DUMONTET H. Boundary layers stresses in elastic composites. In: . 12. Elsevier. 1985 (pp. 215–232).

30. Devries F, Dumontet H, Duvaut G, Lene F. Homogenization and damage for composite structures. International Journal
for Numerical Methods in Engineering 1989; 27(2): 285–298.

31. Lions JL. Some methods in the mathematical analysis of systems and their control(Book). Beijing, Science Press 1981.

32. He Z, Pindera MJ. Finite volume-based asymptotic homogenization of periodic materials under in-plane loading. Journal
of Applied Mechanics 2020; 87(12): 121010.

33. Gao Y, Xing Y, Huang Z, Li M, Yang Y. An assessment of multiscale asymptotic expansion method for linear static problems
of periodic composite structures. European Journal of Mechanics-A/Solids 2020; 81: 103951.

34. Drago A, Pindera MJ. Micro-macromechanical analysis of heterogeneous materials: Macroscopically homogeneous vs
periodic microstructures. Composites Science and Technology 2007; 67(6): 1243–1263.

35. Gurtin ME, Ian Murdoch A. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis
1975; 57(4): 291–323.

36. Gurtin ME, Murdoch AI. Surface stress in solids. International Journal of Solids and Structures 1978; 14(6): 431–440.

37. Zhu Y, Wei Y, Guo X. Gurtin-Murdoch surface elasticity theory revisit: an orbital-free density functional theory perspective.
Journal of the Mechanics and Physics of Solids 2017; 109: 178–197.

38. Catto I, Le Bris C, Lions PL. The mathematical theory of thermodynamic limits: Thomas-Fermi type models. Oxford
University Press . 1998.

39. Piegl L, Tiller W. The NURBS book. Springer Science & Business Media . 1996.

40. Ma C, Xue D, Li S, Zhou Z, Zhu Y, Guo X. Compliance minimisation of smoothly varying multiscale structures using
asymptotic analysis and machine learning. Computer Methods in Applied Mechanics and Engineering 2022; 395: 114861.

41. Li S, Zhu Y, Guo X. Optimisation of spatially varying orthotropic porous structures based on conformal mapping. Computer
Methods in Applied Mechanics and Engineering 2022; 391: 114589.

42. COMSOL Multiphysics® v. 5.6. . cn.comsol.com. COMSOL AB, Stockholm, Sweden.; 2020.

cn.comsol.com

	Machine-Learning-Based Asymptotic Homogenisation and Localisation Considering Boundary Layer Effects
	Abstract
	Introduction
	Basic asymptotic formulation of microstructural boundary layer
	Problem settings
	Asymptotic expansion
	Introduction of boundary layer cells
	Asymptotic formulation with the interior cell
	Expansion of the field variables in the BL region

	Asymptotic analysis of the boundary layer effects
	Leading-order formulation: preparation
	First-order formulation: derivation of BL cell problems
	Second-order formulation: homogenisation

	Energy formulation
	Re-dimensionalisation

	Boundary layer formulation in more generalised situations
	Situation with applied traction
	Spatially-varying microstructures
	Geometric representation and spatial transformation
	Boundary layer formulation

	Situations with different boundary orientations

	Computational feasibility enabled by machine learning
	Localisation
	Determination of input arguments
	Construction of data sets
	Specification of argument values and performance of network training

	Numerical examples
	Remarks on theoretical studies
	The case of periodic porous structures
	Cases with geometrically identical cells
	Cases with geometrically different cells

	Cases with spatially-varying structures
	Rectangular domain infilled with graded microstructure
	Non-rectangular domain infilled with graded microstructure


	Conclusions and discussion
	Acknowledgements
	Data Availability Statement
	Appendix
	Proof of transformation between different boundary orientations
	Details on specific settings associated with B-spline
	References


